Palis J, Yoder MC. Yolk-sac hematopoiesis: the first blood cells of mouse and man. Exp Hematol. 2001;29(8):927–36.
Article
CAS
PubMed
Google Scholar
McGrath KE, Palis J. Hematopoiesis in the yolk sac: more than meets the eye. Exp Hematol. 2005;33(9):1021–8.
Article
PubMed
Google Scholar
McGrath K, Palis J. Ontogeny of erythropoiesis in the mammalian embryo. Curr Top Dev Biol. 2008;82:1–22.
Article
CAS
PubMed
Google Scholar
Kingsley PD, Malik J, Fantauzzo KA, Palis J. Yolk sac-derived primitive erythroblasts enucleate during mammalian embryogenesis. Blood. 2004;104(1):19–25.
Article
CAS
PubMed
Google Scholar
Palis J. Molecular Biology of Erythropoiesis. In: Wickrema A, Kee B, editors. Molecular Basis of Hematopoiesis. New York: Springer; 2009. p. 73–93.
Chapter
Google Scholar
Baron MH, Isern J, Fraser ST. The embryonic origins of erythropoiesis in mammals. Blood. 2012;119(21):4828–37.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kingsley PD, Malik J, Emerson RL, Bushnell TP, McGrath KE, Bloedorn LA, et al. “Maturational” globin switching in primary primitive erythroid cells. Blood. 2006;107(4):1665–72.
Article
PubMed Central
CAS
PubMed
Google Scholar
McGrath KE, Frame JM, Fromm GJ, Koniski AD, Kingsley PD, Little J, et al. A transient definitive erythroid lineage with unique regulation of the beta-globin locus in the mammalian embryo. Blood. 2011;117(17):4600–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sankaran VG, Xu J, Orkin SH. Advances in the understanding of haemoglobin switching. Br J Haematol. 2010;149(2):181–94.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tsiftsoglou AS, Vizirianakis IS, Strouboulis J. Erythropoiesis: model systems, molecular regulators, and developmental programs. IUBMB Life. 2009;61(8):800–30.
Article
CAS
PubMed
Google Scholar
McConnell BB, Yang VW. Mammalian Kruppel-like factors in health and diseases. Physiol Rev. 2010;90(4):1337–81.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hodge D, Coghill E, Keys J, Maguire T, Hartmann B, McDowall A, et al. A global role for EKLF in definitive and primitive erythropoiesis. Blood. 2006;107(8):3359–70.
Article
PubMed Central
CAS
PubMed
Google Scholar
Drissen R, von Lindern M, Kolbus A, Driegen S, Steinlein P, Beug H, et al. The erythroid phenotype of EKLF-null mice: defects in hemoglobin metabolism and membrane stability. Mol Cell Biol. 2005;25(12):5205–14.
Article
PubMed Central
CAS
PubMed
Google Scholar
Basu P, Lung TK, Lemsaddek W, Sargent TG, Williams Jr DC, Basu M, et al. EKLF and KLF2 have compensatory roles in embryonic beta-globin gene expression and primitive erythropoiesis. Blood. 2007;110(9):3417–25.
Article
PubMed Central
CAS
PubMed
Google Scholar
Alhashem YN, Vinjamur DS, Basu M, Klingmuller U, Gaensler KM, Lloyd JA. Transcription factors KLF1 and KLF2 positively regulate embryonic and fetal beta-globin genes through direct promoter binding. J Biol Chem. 2011;286(28):24819–27.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bessis M, Mize C, Prenant M. Erythropoiesis: comparison of in vivo and in vitro amplification. Blood Cells. 1978;4(1-2):155–74.
CAS
PubMed
Google Scholar
Seshi B, Kumar S, Sellers D. Human bone marrow stromal cell: coexpression of markers specific for multiple mesenchymal cell lineages. Blood Cells Mol Dis. 2000;26(3):234–46.
Article
CAS
PubMed
Google Scholar
Manwani D, Bieker JJ. The erythroblastic island. Curr Top Dev Biol. 2008;82:23–53.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chasis JA, Mohandas N. Erythroblastic islands: niches for erythropoiesis. Blood. 2008;112(3):470–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rich IN, Heit W, Kubanek B. Extrarenal erythropoietin production by macrophages. Blood. 1982;60(4):1007–18.
CAS
PubMed
Google Scholar
Rich IN. A role for the macrophage in normal hemopoiesis. II. Effect of varying physiological oxygen tensions on the release of hemopoietic growth factors from bone-marrow-derived macrophages in vitro. Exp Hematol. 1986;14(8):746–51.
CAS
PubMed
Google Scholar
Body JJ. Rationale for the use of bisphosphonates in osteoblastic and osteolytic bone lesions. Breast. 2003;12 Suppl 2:S37–44.
Article
PubMed
Google Scholar
Cremers SC, Eekhoff ME, Den Hartigh J, Hamdy NA, Vermeij P, Papapoulos SE. Relationships between pharmacokinetics and rate of bone turnover after intravenous bisphosphonate (olpadronate) in patients with Paget’s disease of bone. J Bone Miner Res. 2003;18(5):868–75.
Article
CAS
PubMed
Google Scholar
Endo Y, Shibazaki M, Yamaguchi K, Nakamura M, Kosugi H. Inhibition of inflammatory actions of aminobisphosphonates by dichloromethylene bisphosphonate, a non-aminobisphosphonate. Br J Pharmacol. 1999;126(4):903–10.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yamaguchi K, Oizumi T, Funayama H, Kawamura H, Sugawara S, Endo Y. Osteonecrosis of the jawbones in 2 osteoporosis patients treated with nitrogen-containing bisphosphonates: osteonecrosis reduction replacing NBP with non-NBP (etidronate) and rationale. J Oral Maxillofac Surg. 2010;68(4):889–97.
Article
PubMed
Google Scholar
Nakamura M, Yagi H, Endo Y, Kosugi H, Ishi T, Itoh T. A time kinetic study of the effect of aminobisphosphonate on murine haemopoiesis. Br J Haematol. 1999;107(4):779–90.
Article
CAS
PubMed
Google Scholar
Otsuka H, Yagi H, Endo Y, Nonaka N, Nakamura M. Kupffer cells support extramedullary erythropoiesis induced by nitrogen-containing bisphosphonate in splenectomized mice. Cell Immunol. 2011;271(1):197–204.
Article
CAS
PubMed
Google Scholar
Perry JM, Harandi OF, Paulson RF. BMP4, SCF, and hypoxia cooperatively regulate the expansion of murine stress erythroid progenitors. Blood. 2007;109(10):4494–502.
Article
PubMed Central
CAS
PubMed
Google Scholar
Josef B. Phenylhydrazine haematotoxicity. J Appl Biomed. 2007;5:125–30. Zhu X, Liu J, Feng Y, Pang W, Qi Z, Jiang Y, Shang H, Cao Y. Phenylhydrazine administration accelerates the development of experimental cerebral malaria. Exp Parasitol 2015; 156:1-11.
Google Scholar
Esteghamat F, Gillemans N, Bilic I, van den Akker E, Cantu I, van Gent T, et al. Erythropoiesis and globin switching in compound Klf1::Bcl11a mutant mice. Blood. 2013;121(13):2553–62.
Article
CAS
PubMed
Google Scholar
McConnell SC, Huo Y, Liu S, Ryan TM. Human globin knock-in mice complete fetal-to-adult hemoglobin switching in postnatal development. Mol Cell Biol. 2011;31(4):876–83.
Article
PubMed Central
CAS
PubMed
Google Scholar
D’Amici GM, Rinalducci S, Zolla L. An easy preparative gel electrophoretic method for targeted depletion of hemoglobin in erythrocyte cytosolic samples. Electrophoresis. 2011;32(11):1319–22.
Article
PubMed
Google Scholar
Wen L, Zhu P, Liu Y, Pan Q, Qu Y, Xu X, et al. Development of a fluorescence immunochromatographic assay for the detection of zeta globin in the blood of (--(SEA)) alpha-thalassemia carriers. Blood Cells Mol Dis. 2012;49(3-4):128–32.
Article
CAS
PubMed
Google Scholar
Laing EL, Brasch HD, Steel R, Jia J, Itinteang T, Tan ST, et al. Verrucous hemangioma expresses primitive markers. J Cutan Pathol. 2013;40(4):391–6.
Article
PubMed
Google Scholar
Zhou D, Liu K, Sun CW, Pawlik KM, Townes TM. KLF1 regulates BCL11A expression and gamma- to beta-globin gene switching. Nat Genet. 2010;42(9):742–4.
Article
CAS
PubMed
Google Scholar
Sankaran VG, Xu J, Ragoczy T, Ippolito GC, Walkley CR, Maika SD, et al. Developmental and species-divergent globin switching are driven by BCL11A. Nature. 2009;460(7259):1093–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
He Z, Lian L, Asakura T, Russell JE. Functional effects of replacing human alpha- and beta-globins with their embryonic globin homologues in defined haemoglobin heterotetramers. Br J Haematol. 2000;109(4):882–90.
Article
CAS
PubMed
Google Scholar
Bichet S, Wenger RH, Camenisch G, Rolfs A, Ehleben W, Porwol T, et al. Oxygen tension modulates beta-globin switching in embryoid bodies. FASEB J. 1999;13(2):285–95.
CAS
PubMed
Google Scholar
Shah YM, Xie L. Hypoxia-inducible factors link iron homeostasis and erythropoiesis. Gastroenterology. 2014;146(3):630–42.
Article
PubMed Central
CAS
PubMed
Google Scholar
Malik J, Kim AR, Tyre KA, Cherukuri AR, Palis J. Erythropoietin critically regulates the terminal maturation of murine and human primitive erythroblasts. Haematologica. 2013;98(11):1778–87.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kieran MW, Perkins AC, Orkin SH, Zon LI. Thrombopoietin rescues in vitro erythroid colony formation from mouse embryos lacking the erythropoietin receptor. Proc Natl Acad Sci U S A. 1996;93(17):9126–31.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ciriza J, Hall D, Lu A, De Sena JR, Al-Kuhlani M, Garcia-Ojeda ME. Single-cell analysis of murine long-term hematopoietic stem cells reveals distinct patterns of gene expression during fetal migration. PLoS One. 2012;7(1):e30542.
Article
PubMed Central
CAS
PubMed
Google Scholar
Isern J, Fraser ST, He Z, Baron MH. The fetal liver is a niche for maturation of primitive erythroid cells. Proc Natl Acad Sci U S A. 2008;105(18):6662–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chow A, Huggins M, Ahmed J, Hashimoto D, Lucas D, Kunisaki Y, et al. CD169(+) macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat Med. 2013;19(4):429–36.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330(6005):841–5.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science. 2012;336(6077):86–90.
Article
CAS
PubMed
Google Scholar
Lau ET, Kwok YK, Chui DH, Wong HS, Luo HY, Tang MH. Embryonic and fetal globins are expressed in adult erythroid progenitor cells and in erythroid cell cultures. Prenat Diagn. 2001;21(7):529–39.
Article
CAS
PubMed
Google Scholar
Luo HY, Liang XL, Frye C, Wonio M, Hankins GD, Chui DH, et al. Embryonic hemoglobins are expressed in definitive cells. Blood. 1999;94(1):359–61.
CAS
PubMed
Google Scholar
Qiu C, Olivier EN, Velho M, Bouhassira EE. Globin switches in yolk sac-like primitive and fetal-like definitive red blood cells produced from human embryonic stem cells. Blood. 2008;111(4):2400–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yang CT, French A, Goh PA, Pagnamenta A, Mettananda S, Taylor J, et al. Human induced pluripotent stem cell derived erythroblasts can undergo definitive erythropoiesis and co-express gamma and beta globins. Br J Haematol. 2014;166(3):435–48.
Article
PubMed Central
CAS
PubMed
Google Scholar