Ballas SK, Lewis CN, Noone AM, Krasnow SH, Kamarulzaman E, Burka ER: Clinical, hematological, and biochemical features of Hb SC disease. Am J Hemat. 1982, 13: 37-51. 10.1002/ajh.2830130106.
Article
CAS
PubMed
Google Scholar
Blouin M-J, Beauchemin H, Wright A, De Paepe M, Sorette M, Bleau A-M, Nakamoto B, Ou C-N, Stamatoyannopoulos G, Trudel M: Genetic correction of sickle cell disease: insights using transgenic mouse models. Nature Med. 2000, 6: 177-182. 10.1038/72279.
Article
CAS
PubMed
Google Scholar
Herrick JB: Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia. Arch Intern Med. 1910, 6: 517-521.
Article
Google Scholar
Hebbel RP: Adhesive interactions of sickle erythrocytes with endothelium. J Clin Invest. 1997, 99: 2561-2564. 10.1172/JCI119442.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashley-Koch A, Murphy CC, Khoury MJ, Boyle CA: Contribution of sickle cell disease to the occurrence of developmental disabilities: a population-based study. Genet Med. 2001, 3: 181-186. 10.1097/00125817-200105000-00006.
Article
CAS
PubMed
Google Scholar
Rees DC, Williams TN, Gladwin MT: Sickle cell disease. Lancet. 2010, 376: 2018-2031. 10.1016/S0140-6736(10)61029-X.
Article
CAS
PubMed
Google Scholar
Geller AK, O’Connor MK: The sickle cell crisis: a dilemma in pain relief. Mayo Clin Proc. 2008, 83 (3): 320-323. 10.4065/83.3.320.
Article
PubMed
Google Scholar
Dunlop RJ, Bennett KC: Pain management for sickle cell disease. Cochrane Database Syst Rev. 2006, 19 (2): CD003350-
Google Scholar
Serjeant GR: Mortality from sickle cell disease in Africa. BMJ. 2005, 330 (7489): 432-433. 10.1136/bmj.330.7489.432.
Article
PubMed
PubMed Central
Google Scholar
Friedman MJ, Trager W: The biochemistry of resistance to malaria. Sci Am. 1981, 244 (3): 154-164. 10.1038/scientificamerican0381-154.
Article
CAS
PubMed
Google Scholar
Chui DHK: THAL for THAL?. Blood. 2007, 110 (8): 2788-2789.
Article
CAS
Google Scholar
Luzzatto L, Goodfellow P: Sickle cell anemia: a simple disease with no cure. Nature. 1989, 337: 17-18. 10.1038/337017a0.
Article
CAS
PubMed
Google Scholar
Walters MC, Patience M, Leisenring W, Eckman JR, Scott JP, Mentzer WC, Davies SC, Ohene-Frempong K, Bernaudin F, Matthews DC, Storb R, Sullivan KM: Bone marrow transplantation for sickle cell disease. N Engl J Med. 1996, 335 (6): 369-376. 10.1056/NEJM199608083350601.
Article
CAS
PubMed
Google Scholar
Walters MC, Storb R, Patience M, Leisenring W, Taylor T, Sanders JE, Buchanan GE, Rogers ZR, Dinndorf P, Davies SC, Roberts IA, Dickerhoff R, Yeager AM, Hsu L, Kurtzberg J, Ohene-Frempong K, Bunin N, Bernaudin F, Wong WY, Scott JP, Margolis D, Vichinsky E, Wall DA, Wayne AS, Pegelow C, Redding-Lallinger R, Wiley J, Klemperer M, Mentzer WC, Smith FO, Sullivan KM: Impact of bone marrow transplantation for symptomatic sickle cell disease: an interim report. Multicenter investigation of bone marrow transplantation for sickle cell disease. Blood. 2000, 95 (6): 1918-1924.
CAS
PubMed
Google Scholar
de Montalembert M: Management of sickle cell disease. BMJ. 2008, 337: a1397-10.1136/bmj.a1397.
Article
PubMed
Google Scholar
Shesely EG, KiM H-K, Shehee RW, Papayannopoulou N, Smithies O, Popovicht BW: Correction of a human βS-globin gene by gene targeting. Proc Natl Acad Sci USA. 1991, 88: 4294-4298. 10.1073/pnas.88.10.4294.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lan N, Howrey RP, Lee SW, Smith CA, Sullenger BA: Ribozyme-mediated repair of sickle beta-globin mRNAs in erythrocyte precursors. Science. 1998, 280 (5369): 1593-1596. 10.1126/science.280.5369.1593.
Article
CAS
PubMed
Google Scholar
Weatherall DJ: Gene therapy: repairing haemoglobin disorders with ribozymes. Curr Biol. 1998, 8 (19): R696-R698. 10.1016/S0960-9822(98)70439-7.
Article
CAS
PubMed
Google Scholar
Alami R, Gilman JG, Feng YQ, Marmorato A, Rochlin I, Suzuka SM, Fabry ME, Nagel RL, Bouhassira EE: Anti-beta s-ribozyme reduces beta s mRNA levels in transgenic mice: potential application to the gene therapy of sickle cell anemia. Blood Cells Mol Dis. 1999, 25 (2): 110-119. 10.1006/bcmd.1999.0235.
Article
CAS
PubMed
Google Scholar
Xu L, Ferry AE, Monteiro C, Pace BS: Beta globin gene inhibition by antisense RNA transcripts. Gene Ther. 2000, 7 (5): 438-444. 10.1038/sj.gt.3301106.
Article
CAS
PubMed
Google Scholar
Pace BS, Qian X, Ofori-Acquah SF: Selective inhibition of beta-globin RNA transcripts by antisense RNA molecules. Cell Mol Biol (Noisy-le-grand). 2004, 50 (1): 43-51.
CAS
Google Scholar
Amosova O, Broitman SL, Fresco JR: Repairing the Sickle Cell mutation. II. Effect of psoralen linker length on specificity of formation and yield of third strand-directed photoproducts with the mutant target sequence. Nucleic Acids Research. 2003, 31 (16): 4673-4681. 10.1093/nar/gkg659.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kmiec EB: Targeted gene repair. Gene Therapy. 1999, 6 (1): 1-3. 10.1038/sj.gt.3300789.
Article
CAS
PubMed
Google Scholar
Lui L, Rice MC, Kmiec EB: In vivo gene repair of point and frameshift mutations directed by chimeric RNA/DNA oligonucleotides and modified single-stranded oligonucleotides. Nucleic Acids Res. 2001, 29 (20): 4238-4250. 10.1093/nar/29.20.4238.
Article
Google Scholar
Wayengera M: Bone marrow transplantation (BMT) and gene replacement therapy (GRT) in sickle cell anemia. Niger J Med. 2008, 17 (3): 251-256.
Google Scholar
Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD: Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010, 11 (9): 636-646. 10.1038/nrg2842.
Article
CAS
PubMed
Google Scholar
Cathomen T, Joung JK: Zinc-finger nucleases: the next generation emerges. Mol Ther. 2008, 16 (7): 1200-1207. 10.1038/mt.2008.114.
Article
CAS
PubMed
Google Scholar
Guo J, Gaj T, Barbas CF: Directed Evolution of an Enhanced and Highly Efficient FokI Cleavage Domain for Zinc Finger Nucleases. Journal of Molecular Biology. 2010, 400 (1): 96-10.1016/j.jmb.2010.04.060.
Article
CAS
PubMed
PubMed Central
Google Scholar
Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S: Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucl Acids Res. 2005, 33 (18): 5978-5990. 10.1093/nar/gki912.
Article
CAS
PubMed
PubMed Central
Google Scholar
Porteus MH, Carroll D: Gene targeting using zinc finger nucleases. Nat Biotechnol. 2005, 23 (8): 967-973. 10.1038/nbt1125.
Article
CAS
PubMed
Google Scholar
Perez E, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O, Wang N, Lee G, Bartsevich VV, Lee YL, Guschin DY, Rupniewski I, Waite AJ, Carpenito C, Carroll RG, Orange JS, Urnov FD, Rebar EJ, Ando D, Gregory PD, Riley JL, Holmes MC, June CH: Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol. 2008, 26 (7): 808-816. 10.1038/nbt1410.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holt N, Wang J, Kim K, Friedman G, Wang X, Taupin V, Crooks GM, Kohn DB, Gregory PD, Holmes MC, Cannon PM: Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol. 2010, 28 (8): 839-847. 10.1038/nbt.1663.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilen CB, Wang J, Tilton JC, Miller JC, Kim KA, Rebar EJ, Sherrill-Mix SA, Patro SC, Secreto AJ, Jordan APO1, Lee G, Kahn J, Aye PP, Bunnell BA, Lackner AA, Hoxie JA, Danet-Desnoyers GA, Bushman FD, Riley JL, Gregory PD, June CH, Holmes MC, Doms RM: Engineering HIV-Resistant Human CD4+ T Cells with CXCR4-Specific Zinc-Finger Nucleases. PLoS Pathog. 2011, 7 (4): e1002020-10.1371/journal.ppat.1002020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F, Down J, Denaro M, Brady T, Westerman K, Cavallesco R, Gillet-Legrand B, Caccavelli L, Sgarra R, Maouche-Chrétien L, Bernaudin F, Girot R, Dorazio R, Mulder GJ, Polack A, Bank A, Soulier J, Larghero J, Kabbara N, Dalle B, Gourmel B, Socie G, Chrétien S, Cartier N, Aubourg P, Fischer A, Cornetta K, Galacteros F, Beuzard Y, Gluckman E, Bushman F, Hacein-Bey-Abina S, Leboulch P: Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature. 2010, 467 (7313): 318-322. 10.1038/nature09328.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ponnazhagan S, Weigel KA, Raikwar SP, Mukherjee P, Yoder MC, Srivastava A: Recombinant human Parvovirus B19 vectors: erythroid cell-specific delivery and expression of transduced genes. J Virol. 1998, 72: 5224-5230.
CAS
PubMed
PubMed Central
Google Scholar
Sander JD, Maeder ML, Reyon D, Voytas DF, Joung JK, Dobbs D: ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool. Nucl Acids Res. 2010, 38: W462-W468. 10.1093/nar/gkq319.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mandell JG, Barbas CF: Zinc finger tools: custom DNA-binding domains for transcription factors and nucleases. Nucl Acids Res. 2006, 34 (SI): W516-W523.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim Y-G, Cha J, Chandrasegaran S: Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA. 1995, 93: 1156-1160.
Article
Google Scholar
Dreier B, Segal DJ, Barbas CF: Insights into the molecular recognition of the 5 '-GNN-3 ' family of DNA sequences by zinc finger domains. J Mol Biol. 2000, 303 (4): 489-502. 10.1006/jmbi.2000.4133.
Article
CAS
PubMed
Google Scholar
Herrmann F, Garriga-Canut M, Baumstark R, Fajardo-Sanchez E, Cotterell J, Minoche A, Himmelbauer H, Isalan M: p53 Gene Repair with Zinc Finger Nucleases Optimised by Yeast 1-Hybrid and Validated by Solexa Sequencing. PLoS One. 2011, 6 (6): e20913-10.1371/journal.pone.0020913.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doyon Y, Vo TD, Mendel MC, Greenberg SG, Wang J, Xia DF, Miller JC, Urnov FD, Gregory PD, Holmes MC: Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods. 2011, 8 (1): 74-79. 10.1038/nmeth.1539.
Article
CAS
PubMed
Google Scholar
Mátrai J, Chuah MK, VandenDriessche T: Recent advances in lentiviral vector development and applications. Mol Ther. 2010, 18 (3): 477-490. 10.1038/mt.2009.319.
Article
PubMed
PubMed Central
Google Scholar
Silva MM, Rogers PH, Arnone A: A third quaternary structure of human hemoglobin A at 1.7-A resolution. J Biol Chem. 1992, 267 (24): 17248-17256.
CAS
PubMed
Google Scholar
Shaanan B: Structure of human oxyhaemoglobin at 2.1 A resolution. J Mol Biol. 1983, 171 (1): 31-59. 10.1016/S0022-2836(83)80313-1.
Article
CAS
PubMed
Google Scholar
Fermi G, Perutz MF, Shaanan B, Fourme R: The crystal structure of human deoxyhaemoglobin at 1.74 A resolution. J Mol Biol. 1984, 175 (2): 159-174. 10.1016/0022-2836(84)90472-8.
Article
CAS
PubMed
Google Scholar
Okwi AL, Byarugaba W, Ndugwa CM, Parkes A, Ocaido M, Tumwine JK: An up-date on the prevalence of sickle cell trait in Eastern and Western Uganda. BMC Blood Disord. 2010, 10: 5-10.1186/1471-2326-10-5.
PubMed
PubMed Central
Google Scholar
Pattanayak V, Ramirez CL, Joung KJ, Liu DR: Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods. 2011, 8 (9): 765-770. 10.1038/nmeth.1670.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gabriel R, Lombardo A, Arens A, Miller JC, Genovese P, Kaeppel C, Nowrouzi A, Bartholomae CC, Wang J, Friedman G, Holmes MC, Gregory PD, Glimm H, Schmidt M, Naldini L, von Kalle C: An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol. 2011, 29 (9): 816-823. 10.1038/nbt.1948.
Article
CAS
PubMed
Google Scholar