Soleimani M, Nadri S. A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat Protoc. 2009;4:102–6.
Article
CAS
PubMed
Google Scholar
Fei RG, Penn PE, Wolf NS. A method to establish pure fibroblast and endothelial cell colony cultures from murine bone marrow. Exp Hematol. 1990;18:953–7.
CAS
PubMed
Google Scholar
Hasthorpe S, Green SL, Rogerson J, Radley JM. A mouse endothelial cell-specific monoclonal antibody: its reactivity with LTMC endothelium. Exp Hematol. 1991;19:166–9.
CAS
PubMed
Google Scholar
Hattersley G, Chambers TJ. Effects of interleukin 3 and of granulocyte-macrophage and macrophage colony stimulating factors on osteoclast differentiation from mouse hemopoietic tissue. J Cell Physiol. 1990;142:201–9.
Article
CAS
PubMed
Google Scholar
Boggs DR. The total marrow mass of the mouse: a simplified method of measurement. Am J Hematol. 1984;16:277–86.
Article
CAS
PubMed
Google Scholar
Lansdorp PM, Dragowska W. Long-term erythropoiesis from constant numbers of CD34+ cells in serum-free cultures initiated with highly purified progenitor cells from human bone marrow. J Exp Med. 1992;175:1501–9.
Article
CAS
PubMed
Google Scholar
Söderdahl G, Tammik C, Remberger M, Ringdén O. Cadaveric bone marrow and spleen cells for transplantation. Bone Marrow Transplant. 1998;21:79–84.
Article
PubMed
Google Scholar
Baum CM, Weissman IL, Tsukamoto AS, Buckle AM, Peault B. Isolation of a candidate human hematopoietic stem-cell population. Proc Natl Acad Sci U S A. 1992;89:2804–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Slaper-Cortenbach I, Ploemacher R, Löwenberg B. Different stimulative effects of human bone marrow and fetal liver stromal cells on erythropoiesis in long-term culture. Blood. 1987;69:135–9.
CAS
PubMed
Google Scholar
Brouard N, Chapel A, Thierry D, Charbord P, Péault B. Transplantation of gene-modified human bone marrow stromal cells into mouse-human bone chimeras. J Hematother Stem Cell Res. 2000;9:175–81.
Article
CAS
PubMed
Google Scholar
Michejda M, Bellanti JA, Mazumder A, Verma UN, Wu AG. Comparative study of hemopoietic precursors from fetal and adult bone marrow: utilization of stem cells derived from miscarriages. Fetal Diagn Ther. 1996;11:373–82.
Article
CAS
PubMed
Google Scholar
Golfier F, Bárcena A, Harrison MR, Muench MO. Fetal bone marrow as a source of stem cells for in utero or postnatal transplantation. Br J Haematol. 2000;109:173–81.
Article
CAS
PubMed
Google Scholar
Lee WY, Zhang T, Lau CP, Wang CC, Chan KM, Li G. Immortalized human fetal bone marrow-derived mesenchymal stromal cell expressing suicide gene for anti-tumor therapy in vitro and in vivo. Cytotherapy. 2013;15:1484–97.
Article
CAS
PubMed
Google Scholar
Lord BI. The architecture of bone marrow cell populations. Int J Cell Cloning. 1990;8:317–31.
Article
CAS
PubMed
Google Scholar
Lord BI, Hendry JH. The distribution of haemopoietic colony-forming units in the mouse femur, and its modification by x rays. Br J Radiol. 1972;45:110–5.
Article
CAS
PubMed
Google Scholar
Lord BI, Testa NG, Hendry JH. The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood. 1975;46:65–72.
CAS
PubMed
Google Scholar
Grassinger J, Haylock DN, Williams B, Olsen GH, Nilsson SK. Phenotypically identical hemopoietic stem cells isolated from different regions of bone marrow have different biologic potential. Blood. 2010;116:3185–96.
Article
CAS
PubMed
Google Scholar
Guezguez B, Campbell CJ, Boyd AL, Karanu F, Casado FL, Di Cresce C, et al. Regional localization within the bone marrow influences the functional capacity of human hscs. Cell Stem Cell. 2013;13:175–89.
Article
CAS
PubMed
Google Scholar
Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol. 2007;7:118–30.
Article
CAS
PubMed
Google Scholar
Haylock DN, Williams B, Johnston HM, Liu MC, Rutherford KE, Whitty GA, et al. Hemopoietic stem cells with higher hemopoietic potential reside at the bone marrow endosteum. Stem Cells. 2007;25:1062–9.
Article
CAS
PubMed
Google Scholar
Suemizu H, Hasegawa M, Kawai K, Taniguchi K, Monnai M, Wakui M, et al. Establishment of a humanized model of liver using NOD/Shi-scid IL2Rgnull mice. Biochem Biophys Res Commun. 2008;377:248–52.
Article
CAS
PubMed
Google Scholar
Fomin ME, Zhou Y, Beyer AI, Publicover J, Baron JL, Muench MO. Production of factor VIII by human liver sinusoidal endothelial cells transplanted in immunodeficient uPA mice. PLoS One. 2013;8:e77255.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muench MO, Beyer AI, Fomin ME, Thakker R, Mulvaney US, Nakamura M, et al. The adult livers of immunodeficient mice support human hematopoiesis: evidence for a hepatic mast cell population that develops early in human ontogeny. PLoS One. 2014;9:e97312.
Article
PubMed
PubMed Central
Google Scholar
Varga NL, Bárcena A, Fomin ME, Muench MO. Detection of human hematopoietic stem cell engraftment in the livers of adult immunodeficient mice by an optimized flow cytometric method. Stem Cell Stud. 2010;1:e5.
Article
PubMed
PubMed Central
Google Scholar
Craig W, Kay R, Cutler RL, Lansdorp PM. Expression of Thy-1 on human hematopoietic progenitor cells. J Exp Med. 1993;177:1331–42.
Article
CAS
PubMed
Google Scholar
Muench MO, Cupp J, Polakoff J, Roncarolo MG. Expression of CD33, CD38, and HLA-DR on CD34+ human fetal liver progenitors with a high proliferative potential. Blood. 1994;83:3170–81.
CAS
PubMed
Google Scholar
Muench MO, Roncarolo MG, Namikawa R. Phenotypic and functional evidence for the expression of CD4 by hematopoietic stem cells isolated from human fetal liver. Blood. 1997;89:1364–75.
CAS
PubMed
Google Scholar
Sutherland HJ, Eaves CJ, Eaves AC, Dragowska W, Lansdorp PM. Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro. Blood. 1989;74:1563–70.
CAS
PubMed
Google Scholar
Verfaillie C, Blakolmer K, McGlave P. Purified primitive human hematopoietic progenitor cells with long-term in vitro repopulating capacity adhere selectively to irradiated bone marrow stroma. J Exp Med. 1990;172:509–2.
Article
CAS
PubMed
Google Scholar
Srour EF, Brandt JE, Briddell RA, Leemhuis T, van Besien K, Hoffman R. Human CD34+ HLA-DR- bone marrow cells contain progenitor cells capable of self-renewal, multilineage differentiation, and long-term in vitro hematopoiesis. Blood Cells. 1991;17:287–95.
CAS
PubMed
Google Scholar
Rongvaux A, Takizawa H, Strowig T, Willinger T, Eynon EE, Flavell RA, et al. Human hemato-lymphoid system mice: current use and future potential for medicine. Annu Rev Immunol. 2013;31:635–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muench MO, Schneider JG, Moore MA. Interactions among colony-stimulating factors, IL-1 beta, IL-6, and kit-ligand in the regulation of primitive murine hematopoietic cells. Exp Hematol. 1992;20:339–49.
CAS
PubMed
Google Scholar
Muench MO, Firpo MT, Moore MA. Bone marrow transplantation with interleukin-1 plus kit-ligand ex vivo expanded bone marrow accelerates hematopoietic reconstitution in mice without the loss of stem cell lineage and proliferative potential. Blood. 1993;81:3463–73.
CAS
PubMed
Google Scholar
Chervenick PA, Boggs DR, Marsh JC, Cartwright GE, Wintrobe MM. Quantitative studies of blood and bone marrow neutrophils in normal mice. Am J Physiol. 1968;215:353–60.
CAS
PubMed
Google Scholar
Schofield R, Cole LJ. An erythrocyte defect in splenectomized x-irradiated mice restored with spleen colony cells. Br J Haematol. 1968;14:131–40.
Article
CAS
PubMed
Google Scholar
Briganti G, Covelli V, Silini G, Srivastava PN. The distribution of erythropoietic bone marrow in the mouse. Acta Haematol. 1970;44:355–61.
Article
CAS
PubMed
Google Scholar
Papayannopoulou T, Finch CA. On the in vivo action of erythropoietin: a quantitative analysis. J Clin Invest. 1972;51:1179–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee M, Durch S, Dale D, Finch C. Kinetics of tumor-induced murine neutrophilia. Blood. 1979;53:619–32.
CAS
PubMed
Google Scholar
Boggs DR, Patrene KD. Marrow mass and distribution in murine skeletons cleaned by beetles as compared to cut up carcasses and a further simplification of the latter technique. Am J Hematol. 1986;21:49–55.
Article
CAS
PubMed
Google Scholar
Westgren M, Ek S, Bui TH, Hagenfeldt L, Markling L, Pschera H, et al. Establishment of a tissue bank for fetal stem cell transplantation. Acta Obstet Gynecol Scand. 1994;73:385–8.
Article
CAS
PubMed
Google Scholar
Jones DR, Anderson EM, Evans AA, Liu DT. Long-term storage of human fetal haematopoietic progenitor cells and their subsequent reconstitution. Implications for in utero transplantation. Bone Marrow Transplant. 1995;16:297–301.
CAS
PubMed
Google Scholar
Mychaliska GB, Muench MO, Rice HE, Leavitt AD, Cruz J, Harrison MR. The biology and ethics of banking fetal liver hematopoietic stem cells for in utero transplantation. J Pediatr Surg. 1998;33:394–9.
Article
CAS
PubMed
Google Scholar
Theilgaard-Mönch K, Raaschou-Jensen K, Palm H, Schjødt K, Heilmann C, Vindeløv L, et al. Flow cytometric assessment of lymphocyte subsets, lymphoid progenitors, and hematopoietic stem cells in allogeneic stem cell grafts. Bone Marrow Transplant. 2001;28:1073–82.
Article
PubMed
Google Scholar
Cairo MS, Wagner EL, Fraser J, Cohen G, van de Ven C, Carter SL, et al. Characterization of banked umbilical cord blood hematopoietic progenitor cells and lymphocyte subsets and correlation with ethnicity, birth weight, sex, and type of delivery: a Cord Blood Transplantation (COBLT) Study report. Transfusion. 2005;45:856–66.
Article
PubMed
Google Scholar
Griffin JD, Ritz J, Nadler LM, Schlossman SF. Expression of myeloid differentiation antigens on normal and malignant myeloid cells. J Clin Invest. 1981;68:932–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andrews RG, Torok-Storb B, Bernstein ID. Myeloid-associated differentiation antigens on stem cells and their progeny identified by monoclonal antibodies. Blood. 1983;62:124–32.
CAS
PubMed
Google Scholar
Andrews RG, Singer JW, Bernstein ID. Precursors of colony-forming cells in humans can be distinguished from colony-forming cells by expression of the CD33 and CD34 antigens and light scatter properties. J Exp Med. 1989;169:1721–31.
Article
CAS
PubMed
Google Scholar
Litzow MR, Brashem-Stein C, Andrews RG, Bernstein ID. Proliferative responses to interleukin-3 and granulocyte colony-stimulating factor distinguish a minor subpopulation of CD34-positive marrow progenitors that do not express CD33 and a novel antigen, 7B9. Blood. 1991;77:2354–9.
CAS
PubMed
Google Scholar
Terstappen LW, Huang S, Safford M, Lansdorp PM, Loken MR. Sequential generations of hematopoietic colonies derived from single nonlineage-committed CD34 + CD38- progenitor cells. Blood. 1991;77:1218–27.
CAS
PubMed
Google Scholar
Robertson MJ, Soiffer RJ, Freedman AS, Rabinowe SL, Anderson KC, Ervin TJ, et al. Human bone marrow depleted of CD33-positive cells mediates delayed but durable reconstitution of hematopoiesis: clinical trial of MY9 monoclonal antibody-purged autografts for the treatment of acute myeloid leukemia. Blood. 1992;79:2229–36.
CAS
PubMed
Google Scholar
Shipp MA, Look AT. Hematopoietic differentiation antigens that are membrane-associated enzymes: cutting is the key! Blood. 1993;82:1052–70.
CAS
PubMed
Google Scholar
Jin CH, Takada H, Nomura A, Takahata Y, Nakayama H, Kajiwara M, et al. Immunophenotypic and functional characterization of CD33(+)CD34(+) cells in human cord blood of preterm neonates. Exp Hematol. 2000;28:1174–80.
Article
CAS
PubMed
Google Scholar
Moore MA, Broxmeyer HE, Sheridan AP, Meyers PA, Jacobsen N, Winchester RJ. Continuous human bone marrow culture: Ia antigen characterization of probable pluripotential stem cells. Blood. 1980;55:682–90.
CAS
PubMed
Google Scholar
Keating A, Powell J, Takahashi M, Singer JW. The generation of human long-term marrow cultures from marrow depleted of Ia (HLA-DR) positive cells. Blood. 1984;64:1159–62.
CAS
PubMed
Google Scholar
Prosper F, Stroncek D, Verfaillie CM. Phenotypic and functional characterization of long-term culture-initiating cells present in peripheral blood progenitor collections of normal donors treated with granulocyte colony-stimulating factor. Blood. 1996;88:2033–42.
CAS
PubMed
Google Scholar