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Abstract

Background: Numerical methods have recently allowed quantitative interpretation of in vivo murine platelet
consumption data in terms of values for the random destruction rate constant (RD), intrinsic lifespan (LS), and

the standard deviation of In LS (SD), as well as the platelet production rate (PR) and age distribution (AD). But
application of these methods to data obtained in thrombocytopenic patients is problematic for two reasons. First,
such data has in all cases been obtained with radiolabeled platelets, and uptake of the radio-isotope by long lived
cells complicates the analysis. Second, inferred values of the platelet production rate (PR) and random destruction
rate (RD) are difficult to interpret, since increased RD can occur either as a cause or a consequence of
thrombocytopenia.

Methods: We used a numerical method to analyze in vivo platelet consumption data from a series of 41 patients
with immune thrombocytopenic purpura (ITP). An additional parameter, the fraction of labeled long-lived cells (LL),
was evaluated concurrently with RD, LS, and SD. To provide a basis for interpreting these values, we used an iterative
interpolation process to predict their response to different pathophysiologic mechanisms. The process also generates
predicted effects on the widely used immature platelet fraction (IPF).

Results: Optimal parameter value sets were identified in 76 % (31 of 41) of the data sets. 27 of 31 TP patients showed
no substantial homeostatic increase in platelet production, with the remaining 4 showing both augmented platelet
consumption and a compensatory increase in PR. Up to 1/3 of the patients showed the degree of increased RD
expected to result from reduced thrombopoiesis only. “Jacknife” resampling yielded CV values of <0.5 in over 75 % of
the evaluable data sets. Predicted platelet age distributions indicate that interpretation of the IPF and absolute IPF
(alPF) is a complex function of platelet count. We found, counter-intuitively, that reduced PR can increase the IPF, and
increased RD can reduce the alPF.

Conclusions: Our findings support the feasibility of using numerical analysis to quantitatively interpret in vivo platelet
consumption data, to identify likely etiologies of thrombocytopenias, and to assess the utility of IPF measurements in
that context.
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Background

In vivo platelet consumption studies have often been
used to quantify the rates of both random and lifespan-
dependent consumption processes, and to evaluate pro-
duction rate, but their interpretation can be problematic.
The aim of the present study is to demonstrate that a
numerical analysis method can reliably quantify these
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rates, and thereby identify fundamental pathophysiologic
features, in thrombocytopenic patients.

Methods which have been used to interpret such stud-
ies include a simple exponential decay model [1], a
weighted mean method that applies an empirical mix-
ture of separately optimized linear and exponential
decay processes [2], a purely lifespan-dependent model
[3], the Mills-Dornhorst equation (which includes but
does not solve for a random (exponential) consumption
rate constant) [4, 5], the widely used multiple hit model
(based on a unique consumption mechanism for which
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there is little experimental support) [6, 7], and combined
use of the latter two approaches [8, 9].

None of these methods allow concurrent modeling of
the random (hemostatic and phagocyte-mediated) and
lifespan-dependent processes known to result in most
in vivo platelet consumption. Numerical analysis models
have been designed for that purpose, and their utility for
the analysis of murine platelet consumption data has
been demonstrated [10, 11].

It is not clear, however, whether these methods can be
adapted to evaluate existing clinical data, since the latter
in all cases involves tracking of radiolabeled platelets
and includes contributions from uptake of the radio-
isotope by other, longer-lived cell types. It is also unclear
how to translate the resultant kinetic parameter values
into useful conclusions about how individual patients
became thrombocytopenic. Here we have modified a
previously described numerical model [10] to success-
fully analyze and interpret published data from a series
of patients with immune thrombocytopenic purpura
(ITP) [12].

Methods

Patients

Entry criteria for the ITP patients have been de-
scribed previously [12]. The study, including informed
consent procedures, was performed according to the
principles outlined in the Declaration of Helsinki of
1975. Briefly, '''Indium-labeled autologous platelet
consumption data from 41 consecutive adult patients
with prednisone non-responsive primary ITP was
reviewed. The data was obtained either (A) at the
time of diagnosis, or (B) after failure to sustain a
platelet count response to prednisone treatment.
Diagnostic criteria for all patients included exclusion
of other malignant, metabolic, or pharmacologic
causes, as well as causes of “secondary” ITP such as
hepatitis C virus (HCV) infection. For those in group
(A), rapid consumption of autologous '''Indium-la-
beled platelets (interpreted via the multiple hit model
[6]) was an additional diagnostic criterion. For those
in group (B), demonstration of antiplatelet antibodies
on the platelet surface via indirect immunofluores-
cence [13] was used for this purpose.

All of the patients in this study underwent splenectomy
after failing to respond adequately to prednisone treat-
ment. Patients were deemed to have had a complete
response to splenectomy if their platelet count persistently
exceeded 100 x 10°/L thereafter, with no significant bleed-
ing episodes. They were considered “non-responders” if
their subsequent platelet count did not exceed either 30 x
10%/L, or twice their baseline count, or if they had persist-
ent significant bleeding episodes.
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Platelet kinetics studies

These have been described in detail previously [12].
Briefly, platelet rich plasma was prepared by differential
centrifugation, and platelets prepared by a subsequent
high speed centrifugation were labeled with '"'Indium
oxine by standard methods. Peripheral blood specimens
obtained at 30 min after injection were considered
“baseline” measurements (for patient 30, a 1.5 h time
point was used), and all subsequent measurements were
normalized to these for each patient. Equilibration with
a pool of splenic platelets is thought to be complete well
within this initial time frame [14]. All post-injection
specimens for each patient were evaluated in a gamma
counter at the same time to eliminate decay-related
effects on recovery.

Numerical analysis

Data analysis was performed on desktop computers
using Microsoft Excel. Baseline (initial) parameter ranges
searched were RD 0-19 (resolution 1 %) %/h, LS 0-—
15.2 % (resolution 0.8 %), and SD 20-267 h (resolution
13 h). LL and RD ranges and resolutions were then em-
pirically optimized to the values shown in Table 1. The
equilibration metric was calculated as the net platelet
count produced by the model at the midpoint of the
equilibration phase divided by the net platelet count at
the end of the equilibration phase, as described previ-
ously [10]. All searches achieved an equilibration metric
value of >0.997 (1000 interval equilibration phase, 0.5 h
per interval). Searches of resampled data sets were per-
formed over the same parameter ranges shown in
Table 1. For cases in which all resampled data sets
yielded the same parameter values as the complete data
set at resolution “R”, the upper limit of the standard de-
viation was estimated by the value obtained had one
resampled data set yielded a parameter value one “R”
range removed from that of the complete data set.

Results and discussion

Modeling in vivo platelet turnover

The numerical model used here [10] posits that an
in vivo platelet population can be visualized in a spread-
sheet as a series of small platelet cohort concentrations.
The cohorts are assumed to be produced at a constant
rate (PR, K/ul/h) in short sequential time periods, and
individually consumed, by both random and lifespan-
dependent processes, at the end of each such time
period. The consumption curve for individual cohorts is
determined by a random destruction rate constant (RD,
%/h), by the lognormally distributed cohort lifespan (LS,
hr), and by the standard deviation of In LS (SD). Popula-
tion platelet consumption curves are generated by sum-
ming the cohort values at sequential time points.
Optimal theoretical consumption curves generated by a
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Table 1 Patient characteristics, search parameter ranges, and optimal parameter values

Patient characteristics Search parameter ranges

Optimal parameter values and residuals (55/n)

Patient Platelets (x n (data RD (%/h) LL (%) RD (@Y LS (hr) CV LL (%) CV SD (of PR (K/ul/h)  SS/n
10e9/L) points) (%/h) In LS)

1 30 6 0-4.75 0-15.2 25 0.08 189 0.39 6.4 044 0.2 0.77 043
2 119 9 0-4.75 0-152 075 039 228 0.2 128 03 02 0.89 6.92
3 165 9 0-4.75 0-15.2 2 0.15 176 0.2 8.8 0.1 03 355 1.81
4 24 9 45-925 0-152 6.75 013 267 na* 4.8 0.31 0.2 1.62 8.26
5 80 9 35-825 0-152 55 0.06 215 na* 48 023 02 44 261
7 41 9 1.0-5.75 0-152 35 0.06 176 0.51 6.4 < 0.13% 0.1 144 12
8 58 8 0-4.75 152-304 2 043 202 0.36 23.2 044 0.1 1.64 425
11 10 5 9.5-1475 0-152 125 002 267 na* 72 181 02 1.25 193
13 44 6 0-4.75 0-152 15 0.28 189 039 96 063 0.1 0.71 158
14 17 5 9.5-1525 0-152 1225 0.1 72 294 0 (sd <0.06*%) 03 2.08 7.02
17 8 9 0-4.75 0-15.2 1.75 02 215 0.56 104 1.05 0.1 0.14 36.3
18 88 7 0-4.75 0-15.2 2 0.2 150 0.77 8 0.34 0.2 1.92 33
20 45 9 25-725 0-152 525 011 228 04 64 042 0.2 2.36 22.1
21 143 9 0-4.75 88-240 O (sd<0.22*%) 124 < 012" 112 0.16 0.2 1.34 5.82
22 85 8 0-4.75 0-15.2 125 032 m 0.14 56 043 03 1.61 149
23 119 9 0-4.75 152-304 0 (sd=0.22) 124 0.09 224 0.07 03 12 4.03
24 20 6 0-4.75 0-152 25 08 33 0.66 16 042 03 1.04 214
25 39 9 20-6.75 0-152 45 0.09 228 0.75 4.8 0.2 0.2 1.76 8.2
27 2 9 55-1025 0-152 825 006 176 0.73 1.2 0.18 0.1 0.17 477
28 22 9 0-4.75 0-15.2 225 02 254 0.35 13.6 0.25 0.1 0.5 244
29 34 9 20-6.75 0-152 45 0.23 189 0.85 64 04 0.1 1.53 18.1
30 13 6 0-4.75 0-15.2 175 024 137 0.25 64 1.05 0.2 0.26 6.28
32 36 5 30-775 0-152 725 004 72 053 24 027 0.1 263 038
33 238 7 0-4.75 136-288 025 256 163 047 208 039 02 233 102
34 77 6 20-6.75 168-320 45 0.27 124 0.35 24 0.23 0.1 349 551
35 37 9 05-525 0-152 3 048 137 1.02 56 036 03 1.17 134
36 32 6 45-925 0-152 575 015 m 0.58 64 0.95 02 1.85 5.88
37 102 6 0-4.75 11.2-264 3 0.58 228 0.31 176 043 0.1 3.07 49.5
38 170 7 0-4.75 176-328 025 12 150 0.07 248 005 0.1 145 2.81
39 21 6 30-775 0-152 525 035 m 1.27 12.8 0.39 0.2 1.12 273
40 43 6 25-725 0-152 5 035 124 na* 144 041 0.2 2.16 15.8
Normalized 191 23 005-1.0 na 0.5 140 na 0.2 212 573

Platelet counts were obtained at the time of the study. Patients 1,2, and 3 showed a major subsequent response to splenectomy (see text). Resolution is equal to
5 % of the search ranges shown. The “normalized” data set is pooled data from the three patients (3, 33, and 38) whose platelet counts transiently exceeded

150 K/ul in response to prednisone. CV values were obtained by “jackknife” resampling (see text). “na*” denotes cases for which one or more of the resampled or
complete data sets yielded LS values at the high end of the search range. Values marked by ** were for cases in which all of the resampled data sets yielded the

same optimal parameter value (see Methods)

large range of possible parameter values are identified
via quantitative comparison to each data set (summed
squared residual values, or SS).

For the 41 patient studies analyzed here, each patient’s
platelet consumption data was normalized to the first
(baseline) measurement of circulating **'In. Visual inspec-
tion of the data strongly suggests that many of the labeled
platelet preparations contained long lived species, as others

have described in similar studies [15, 16]. This is evident in
the plateau phase seen at late times in the consumption
data (for example, patients 35 and 27, Fig. 4). To take this
into account, we evaluated a fourth parameter: the fraction
of the labeled cells/platelets consisting of long lived (spe-
cies (LL, %). This parameter simply “shrinks” the scope of
the analysis to the consumption of platelets from 100 % of
the time zero value to an optimizable minimum percentage
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(LL). For modeling purposes, lifespans of these long lived
species are assumed to be infinite.

Optimal parameter value search process

Optimal parameter value searches were performed as
shown schematically in Fig. 1. For a given data set, SS
values are determined for each possible set of parameter
values in a four-dimensional parameter space defined by
RD, LS, SD, and LL. The core component of the search
is an evaluation of SS for each point in a 20 x 20 plane
of possible LS and LL values at fixed values of RD and
SS. The resultant minimum “planar” SS values are visu-
ally identifiable (see examples in Fig. 2). This process is
repeated over a range of 20 RD values, yielding in most
cases single “volume” SS minima as shown in Fig. 3a.
Finally, the entire process is repeated at a series of SD
values, and the resultant volume minima are compared in
order to identify a “global” minimum SS value and its asso-
ciated parameter values. Distinguishable alternative volume
minima showing SS values greater than those of the global
minima were also seen in some data sets (see below).
Searches were performed for only three SD values, as this
generated a plausible range of distribution widths for the
resultant lifespan-dependent consumption rates (see exam-
ples in Fig. 3b) while significantly reducing computation
time. Examples of the consumption curves generated by
the optimal parameter values are shown in Fig. 4.

Data quality evaluation and optimal parameter value
search results

This process is outlined in Fig. 5. Of the 41 originally re-
ported ITP patient data sets, one was excluded due to
lack of initial time point data. One patient demonstrated
an initial platelet clearance rate of 46 % in the first 1.5 h
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of the study (>4 standard deviations faster than the
mean). Because this value suggests the type of platelet
activation during labeling/processing that we have on
occasion seen in murine platelet clearance studies (TS,
unpublished), this data was also excluded. For the re-
mainder, quality of parameter value optimization was
evaluated in terms of the ratio of SS to n (the number of
data points per patient data set), where n ranged from 5
to 9 (Table 1). One case (patient 31) with an SS/n value
of 143 (over four standard deviations from the mean
value of 18.5) was then excluded. No other SS/n values
fell beyond two sd from the mean.

A single “global” minimum SS value, with its associ-
ated (optimal) parameter values, was identified in 24 of
the 39 evaluable data sets. The optimal consumption
curves show a large amount of inter-patient variation, as
the examples in Fig. 4a demonstrate. Of those showing
more than one minimum, convincing global minima
were identified in four data sets on the basis of
goodness-of-fit. Specifically, the global minima in these
cases showed SS values which were less than 50 % of
those defining the alternative (local) minima. Three data
sets showed global minima for which comparison of ab-
solute vs. squared residuals provided additional support
for their significance (see Additional file 1). Seven
data sets, however, showed local minima that could
not be distinguished from the global minima on these
bases. In sum, we were able to identify convincing
global minima in 31 of the 39 evaluable data sets
(79 %) shown in Table 1.

Data quality was further evaluated by performing “jack-
knife” resampling studies on each of the patient data sets in
Table 1 [17]. Optimal parameter values were obtained for
each of the n subsets for each data set via the same process

LS

Parameter space for RD, LS, LL
(20 x 20 x 20) at SD,

LL _
LS;

RD SS

Search sequence for parameter space
at three SD values

Fig. 1 Optimal parameter search schematic. Left: parameter space evaluated for each data set. Right: Schematic of search sequence used. For
each data set, SS values were calculated for each point in each RD-defined plane in parameter space. Minimal SS values were identified for each
plane; each plane was evaluated at 20 RD values; and each RD value was evaluated at 3 SD values

RDI-ZU

—

sD 1,23




Strom BMC Hematology (2015) 15:14 Page 5 of 11

-

Patient 35: SS value minima in sequential RD-defined planes

RD, %/hr: 2.75 3.0 3.25
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Fig. 2 Identifying optimal parameter values. The graphs demonstrate three ‘planar’ SS value minima, of which the minimum in the plane defined
by RD = 3.0 %/h is the ‘volume’ minimum at this SD value (0.3). The parameter values associated with this SS minimum yield the consumption
curve for this patient shown in Fig. 4. Horizontal axis scales are as follows: For LL, 0 to 15.2 %, resolution 0.8 %. For LS, 20 to 267 h, resolution

13 h. See Table 1 for additional data

-

A) SS value minima in sequential RD-defined plates

Patient 35 (SD 0.3) Patient 27 (SD 0.1) Patient 2 (SD 0.2)
400 - 400 - 800 -
300 - 300 600 -
(V] () (V]
3 E 3
g 200 - T 200 | S 400
(%) (%] (%)
(%] (%] (%]
100 | 100 | 200 |
0 ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘
0% 2% 4% 6% 0% 5%  10%  15%  20% 0% 2% 4% 6%
RD RD RD

B) Optimal fractional lifespan-dependent platelet consumption rates

Patient 35 (SD 0.3) Patient 27 (SD 0.1) Patient 2 (SD 0.2)
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0.015 -
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Fig. 3 Optimal parameter value searches and lifespan distributions. Top: The examples shown yielded optima in three different SD-defined parameter
spaces. The low points on the SS value curves define the optimal parameter value sets. Resolution is 0.25 %/h (patients 35, 2), 1 %/h (patient 27). Bottom:
the optimal fractional lifespan dependent consumption rate (LSDC) distributions for these optima are shown. For example, the optimal parameter values
for patient 35 demonstrate the distribution of lifespan-dependent consumption rates per cohort (peaking at 1 %/h) shown at left. Resolution is 0.5 hr
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A) Examples of parameter-generated optimal consumption curves
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RD, %/hr

B) Relationship between RD value and variance of LS estimate

Fig. 4 Modeled consumption curves, LS variance. a Examples of parameter-generated optimal modeled consumption curves. The data points
shown for each patient were used to infer optimal parameter values (RD, LS, SD, and LL; Table 1) predictive of the consumption curves shown.
b Relationship between RD value and variance of LS. Values are from Table 1

used to analyze each complete data set (at the SD value of
the complete data set’s global minimum). We found CV
values for calculated RD and LL parameters to be under 0.5
for over 75 % of these cases (Table 1). Quantification of
platelet lifespan was more difficult, with only 52 % of our
cases showing CV values for the LS parameter of under 0.5.
That is expected, however, because LS value estimates
showed a larger variance in cases where random destruc-
tion predominated (Fig. 4b).

Predicting the effects of reduced platelet production and
increased random destruction

As a guide to interpreting the parameter values in Table 1,
we used the model to predict how a normal platelet popu-
lation’s consumption parameter values might shift in re-
sponse to A) impaired production, B) increased
consumption, or C) increased consumption in association
with a homeostatic increase in platelet production. Our as-
sumptions were:

i) The optimal parameter values (RDy, LS,, and
SDy) and the associated platelet production rate
(PRy) obtained for the three patients in the study
whose platelet counts transiently normalized in
response to prednisone (patients 3, 33, and 38,
Table 1) are representative of normal.

ii) RD is comprised of two component processes:
Hemostatic RD (HRD) and non-hemostatic RD
(NHRD) (i.e. RD = HRD + NHRD). Substantial
hepatic NHRD is a well characterized
phenomenon [18].

iii) The absolute HRD value at a normal platelet count
(aHRDy) makes up a given normal fraction (“”) of
absolute RD (i.e. aHRDy/RDg = f). We do not know
the normal value of f.

iv)aHRD,, is maintained, as platelet count declines,
via an increase in HRD and a resultant increase
in RD, as suggested by earlier studies of platelet
turnover [8].
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41 Patient data sets ‘

v

—> ‘ Lack of initial data point (1) ‘

| —

Rapid clearance consistent with
platelet activation (1)

39 evaluable data sets

Unable to find high quality
curve (optimal S5/n > 4 sd from
mean) (1)

I

Two or more minima showing
comparable SS values (7)

31 parameter value sets ‘

Fig. 5 Data quality evaluation. Schematic showing criteria used to

remove non-evaluable data sets from evaluation. The first data point
obtained for the patient lacking an initial data point was obtained at

6 h after infusion of labeled platelets

Page 7 of 11

v) LS is not affected by reduced platelet production.
Studies of the genetic basis of platelet lifespan
support this assumption [3].

The effect of reduced platelet production (PR) on RD
and platelet count was modeled as shown in Fig. 6. The
process begins (step A) with the optimal (baseline) par-
ameter values for pooled data from the three patients
who transiently normalized their platelet counts
(Table 1), using an initial “f” value of 1.0. From this set,
a “target” reduced platelet production rate (PR;) is gen-
erated, corresponding to 90 % of PRy. Using that value,
the model generates the expected (reduced) aHRD
value (aHRD;). We then (step B) incrementally in-
crease HRD until the model generated value of aHRD
(aHRD;) = aHRD,. The associated RD; value (=HRD; +
NHRD,) and platelet count values are those predicted
to occur at PR;. Finally (step C), we repeat steps A
and B with a series of reduced platelet production
rates (PR;). This generates predicted HRD and platelet
count values for each PR; value. We then repeated
this analysis at f values of 0.5 and 0.2.

We note that for our baseline parameter values, aRD,
(RD x platelet count) is equal to 45 % of PR,. We make
no quantitative predictions for the effect of reducing PR

A) Candidate reduced
PR value generates
reduced aRD value

B) Series of candidate
increased RD values to
identify optimal RD
value and associated P
value

C) Repeat A and B for
series of reduced PR
values

Fig. 6 Modeling the effect of reduced Production rate on HRD and Platelet count. Schematic of the interpolation process described in the text
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below aRD, because the assumptions underlying the
current numerical analysis model may not hold in that
case. This is because the number of hemostatic targets is
expected to increase below platelet counts at which
hemostasis begins to be impaired. That in turn would
invalidate the assumption of a constant absolute HRD
rate, which is one of the bases for our iterative predictive
method (Fig. 5). A model incorporating a dynamic
hemostatic target population will be needed to predict
platelet consumption rates in these circumstances.

To model the effect of increased random platelet con-
sumption (RD), we generated a series of incrementally
reduced target platelet counts (P;)(range: 90 % to 10 %
of baseline), and to achieve each we incrementally in-
creased RD from its baseline value until the model gen-
erated value of P (P,) was equal to P;. To model the
concurrent effects of increased RD and homeostatically
increased PR, we used the same series of target platelet
counts (P;), and for each we increased PR in a manner
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proportional to the reduction in platelet count (to a
maximum of twice the baseline PR value, a conservative
theoretical starting point) before, again, empirically iden-
tifying RD;.

The results of these three modeling approaches are
plotted with the values obtained for the patients in
Fig. 7.

Optimal patient parameter values in comparison to
modeled values

Surprisingly, only four patients in the study showed a
platelet production rate that is even modestly increased
(>50 %) in comparison to the presumed normals (Fig. 7c).
The latter showed a mean platelet production rate
(2.12 K/ul/h) comparable to the 1.7 K/ul/h rate esti-
mated for normals in a previous study [8]. The finding
of predominantly low to normal production rates in the
thrombocytopenic cases (Fig. 7a) is corroborated by the
distribution of random destruction rates (Fig. 7b), where

Fig. 7 Platelet production and consumption, observed and predicted parameter values. Optimal RD and PR values from Table 1 are plotted

for each of the patients in the study. Projected values for thrombocytopenias due to reduced production (at three values of HRD/RD), increased
consumption with no homeostatic increase in production, and increased consumption with a compensatory increase in production rate,

were interpolated as described in the text. a Population turnover rate, which at equilibrium equals platelet production rate, vs. platelet count.

b Random destruction rate (RD) vs. platelet count. ¢ RD and PR values from a and b. Error bars are standard deviations arrived at via jacknife
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rates consistent with no increase in platelet production
are seen for, again, all but a handful of the patients. A
surprisingly large number of cases (at least 12 of 31) fall
near the RD rates predicted to result solely from
impaired platelet production. The predicted rates vary
significantly, however, as a function of aHRDy/RDy (‘).

Because we don’t know the normal value of ‘f, our
ability to predict the increase in RD at low platelet
counts is limited. Future studies in patients with throm-
bocytopenias due to impaired platelet production could
resolve that problem.

Modeling of immature platelet fraction values

An ability to take up fluorescent marker dyes such as
thiazole orange (a marker of “reticulated platelets”, RP)
or the proprietary dyes used in Sysmex hematology ana-
lyzers (marking the “immature platelet fraction”, IPF) is
thought to be characteristic of those platelets which have
recently been released into the bloodstream. The age
threshold (T) at which “young’ platelets stop taking up
these marker dyes is not known. Because the numerical
analysis model generates a platelet age distribution for
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any given set of parameter values, it can be used both to
estimate T and to predict the effect of altered production
and consumption rates on the fraction of platelets of age
less than T (i.e. the IPF).

Specifically, the normal range for the IPF is approxi-
mately 4.5 % (each clinical laboratory typically estab-
lishes its own range; this is the value in use at the
Memphis VA Medical Center). Per the age distribution
predicted by the model for our normalized controls
(Fig. 8a), the youngest 4.5 % of platelets corresponds to
those aged less than 4 h (i.e. T =4 h). Application of that
cutoff to the age distributions generated during model-
ing of the effects of altered production and/or consump-
tion (Fig. 7), generates the predicted IPF and absolute
IPF (aIPF) for thrombocytopenias induced by those
mechanisms, as shown in Fig. 8b.

We note that this analysis depends on the assump-
tion that all nascent platelets below a given age (T)
take up the fluorescent markers used in the RP and
IPF assays. Our measurements of mass turnover for
mature and reticulated murine platelets suggest that
this may not be the case [19].

A) Inferred age distribution histograms
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20 - IPF 16 -

60 - 12 -
x 2

540 1 E 8
©

20 4

0 - T T T 1 0
0 50 100 150 200 0

platelet count, k/ul

group (Table 1), as described in the text

Normalized platelet count group patient 37

10% J 30%
2 7
2 3% o 25%
2 [
c_;- 6% ‘ E 20%
E oy = 15%
2" 2 10%
g % o 5%

0% T T L 0% T T

0 50 100 150 200 0 50 100 150 200

Fig. 8 Age distribution histograms and IPF modeling. a Histograms were generated from the optimal kinetic parameter values shown in Table 1,
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Conclusions

Here we have shown the feasibility of quantifying
platelet consumption and production rate parameters
via numerical analysis of clinical autologous '''In-
labeled platelet consumption data. Although in some
cases more than one set of rate parameters yields a
consumption curve that closely fits the in vivo plate-
let consumption data, we were able to identify a sin-
gle “global” optimum parameter set for 79 % of the
evaluable data sets. We have shown that the technical
challenges associated with quantifying the variable
amount of long-lived labeled cells in these studies are
tractable. It would however be preferable to avoid the
need for such calculations via the use of fluorescently
labeled, rather than radiolabeled, platelets in this type
of study.

Only a small fraction of the prednisone-refractory I'TP
patients in this study (4 of 39 evaluable patients) showed
evidence of a compensatory increase in platelet produc-
tion rate. Platelet production rates below those of the
presumed normals were frequent, and for several pa-
tients a thrombocytopenia due solely to impaired platelet
production could not be ruled out. More data from nor-
mal controls would be needed to confirm these conclu-
sions, as would studies aimed at quantifying the normal
(absolute) rate of random hemostatic platelet consump-
tion. Also, it remains possible that a strong homeostatic
increase in platelet production rate is characteristic of
those ITP patients who demonstrate a durable response
to prednisone. If they can be correlated with other types
of study (such as evaluation of the immunologic effects
on megakaryocyte function that others have reported
[20]) [21]), our findings would be consistent with the
normal serum thrombopoietin (TPO) levels seen in most
ITP patients [22—25]. That observation remains difficult
to explain.

Finally, our modeling of the impact of changes in
platelet production and consumption rates on the plate-
let age distribution suggest that there is no simple cor-
relation between the alPF and the etiology of a given
thrombocytopenia. Despite the fact that the platelet
count is used to calculate the aIPF, the alPF can only be
interpreted in the context of the platelet count (Fig. 8b).
But if the predicted curves in Fig. 8b can be verified by
comparison of IPF values to measured clinical platelet
production and consumption rates in bone marrow fail-
ure patients, the IPF and platelet count could subse-
quently be used to infer the kinetic bases for most
thrombocytopenias.

Additional file

[ Additional file 1: Optimal parameter search results. (DOCX 26 kb) J
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Abbreviations

RD: Random destruction (%/h); LS: Intrinsic lifespan (hr); SD: Standard
deviation of In LS; PR: Production rate (K/ul/h); AD: Age distribution;

ITP: Immune thrombocytopenic purpura; CV: Coefficient of variation (stdev/
mean); IPF: Immature platelet fraction (%); alPF: Absolute immature platelet
fraction (K/ul/h); LL: Long lived species (%); SS: Sum of squared residuals
value; SS/n: SS value normalized to the number of data points in a given
data set; RDg, LSo, SDo: Optimal parameter values for the “normalized” subset
of patients; HRD: Hemostatic random destruction (%/h); NHRD: Non-
hemostatic random destruction (%/h); aHRD, aNHRD: Absolute values of HRD
and NHRD (K/ul/h); HRDy, RDy: Values of HRD and RD for the “normalized”
subset of patients; “f": Ratio of aHRD, to RDg; P;: Platelet count at rank “I" in
the interpolation process (Fig. 6); RP: Reticulated platelets; T: Threshold age
below which platelets are identified as “immature”.
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