Weisel JW. Fibrinogen and fibrin. Adv Protein Chem. 2005;70:247–99.
Article
CAS
PubMed
Google Scholar
Blomback B, Hessel B, Hogg D, Therkildsen L. A two-step fibrinogen--fibrin transition in blood coagulation. Nature. 1978;275:501–5.
Article
CAS
PubMed
Google Scholar
Weisel JW, Veklich Y, Gorkun O. The sequence of cleavage of fibrinopeptides from fibrinogen is important for protofibril formation and enhancement of lateral aggregation in fibrin clots. J Mol Biol. 1993;232:285–97.
Article
CAS
PubMed
Google Scholar
Medved L, Weisel JW. Recommendations for nomenclature on fibrinogen and fibrin. J Thromb Haemost. 2009;7:355–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okumura N, Terasawa F, Haneishi A, Fujihara N, Hirota-Kawadobora M, Yamauchi K, et al. B:b interactions are essential for polymerization of variant fibrinogens with impaired holes ‘a’. J Thromb Haemost. 2007;5:2352–9.
Article
CAS
PubMed
Google Scholar
Cesarman-Maus G, Hajjar KA. Molecular mechanisms of fibrinolysis. Br J Haematol. 2005;129:307–21.
Article
CAS
PubMed
Google Scholar
Hoylaerts M, Rijken DC, Lijnen HR, Collen D. Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J Biol Chem. 1982;257:2912–9.
CAS
PubMed
Google Scholar
Diamond SL, Eskin SG, McIntire LV. Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells. Science. 1989;243:1483–5.
Article
CAS
PubMed
Google Scholar
Blomback B, Banerjee D, Carlsson K, Hamsten A, Hessel B, Procyk R, et al. Native fibrin gel networks and factors influencing their formation in health and disease. Adv Exp Med Biol. 1990;281:1–23.
Article
CAS
PubMed
Google Scholar
Wolberg AS, Monroe DM, Roberts HR, Hoffman M. Elevated prothrombin results in clots with an altered fiber structure: a possible mechanism of the increased thrombotic risk. Blood. 2003;101:3008–13.
Article
CAS
PubMed
Google Scholar
Ryan EA, Mockros LF, Weisel JW, Lorand L. Structural origins of fibrin clot rheology. Biophys J. 1999;77:2813–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mills JD, Ariens RA, Mansfield MW, Grant PJ. Altered fibrin clot structure in the healthy relatives of patients with premature coronary artery disease. Circulation. 2002;106:1938–42.
Article
CAS
PubMed
Google Scholar
Collet JP, Allali Y, Lesty C, Tanguy ML, Silvain J, Ankri A, et al. Altered fibrin architecture is associated with hypofibrinolysis and premature coronary atherothrombosis. Arterioscler Thromb Vasc Biol. 2006;26:2567–73.
Article
CAS
PubMed
Google Scholar
Undas A, Kaczmarek P, Sladek K, Stepien E, Skucha W, Rzeszutko M, et al. Fibrin clot properties are altered in patients with chronic obstructive pulmonary disease. Beneficial effects of simvastatin treatment. Thromb Haemost. 2009;102:1176–82.
CAS
PubMed
Google Scholar
Francis CW, Bunce LA, Sporn LA. Endothelial cell responses to fibrin mediated by FPB cleavage and the amino terminus of the beta chain. Blood Cells. 1993;19:291–306.
CAS
PubMed
Google Scholar
Michiels C. Endothelial cell functions. J Cell Physiol. 2003;196:430–43.
Article
CAS
PubMed
Google Scholar
Libby P, Aikawa M, Jain MK. Vascular endothelium and atherosclerosis. Handb Exp Pharmacol. 2006;176(Pt 2):285–306.
Article
CAS
PubMed
Google Scholar
van Hinsbergh VW. Endothelium--role in regulation of coagulation and inflammation. Semin Immunopathol. 2012;34:93–106.
Article
PubMed
PubMed Central
Google Scholar
Suzuki Y, Yasui H, Brzoska T, Mogami H, Urano T. Surface-retained tPA is essential for effective fibrinolysis on vascular endothelial cells. Blood. 2011;118:3182–5.
Article
CAS
PubMed
Google Scholar
Jakobsen E, Kierulf P. A modified beta-alanine precipitation procedure to preparefibrinogen free of antithrombin-III and plasminogen. Thromb Res. 1973;3:145–59.
Article
CAS
Google Scholar
Tang L, Eaton JW. Fibrin(ogen) mediates acute inflammatory responses to biomaterials. J Exp Med. 1993;178:2147–56.
Article
CAS
PubMed
Google Scholar
Varisco PA, Peclat V, van Ness K, Bischof-Delaloye A, So A, Busso N. Effect of thrombin inhibition on synovial inflammation in antigen induced arthritis. Ann Rheum Dis. 2000;59:781–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Hinsbergh VW, Engelse MA, Quax PH. Pericellular proteases in angiogenesis and vasculogenesis. Arterioscler Thromb Vasc Biol. 2006;26:716–28.
Article
PubMed
Google Scholar
Zacharowski K, Zacharowski P, Reingruber S, Petzelbauer P. Fibrin(ogen) and its fragments in the pathophysiology and treatment of myocardial infarction. J Mol Med (Berl). 2006;84(6):469–77.
Article
CAS
Google Scholar
De Caterina R, Massaro M, Libby P. Endothelial functions and dysfunctions. In: De Caterina R, Libby P, editors. Endothelial dysfunctions and vascular disease. Oxford, UK: Blackwell Futura; 2007. p. 3–25.
Lacroix R, Sabatier F, Mialhe A, Basire A, Pannell R, Borghi H, et al. Activation of plasminogen into plasmin at the surface of endothelial microparticles: a mechanism that modulates angiogenic properties of endothelial progenitor cells in vitro. Blood. 2007;110:2432–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fiuza C, Bustin M, Talwar S, Tropea M, Gerstenberger E, Shelhamer JH, et al. Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood. 2003;101:2652–60.
Article
CAS
PubMed
Google Scholar
Jiang SJ, Lin TM, Wu HL, Han HS, Shi GY. Decrease of fibrinolytic activity in human endothelial cells by arsenite. Thromb Res. 2002;105:55–62.
Article
CAS
PubMed
Google Scholar
Michaud-Levesque J, Rolland Y, Demeule M, Bertrand Y, Beliveau R. Inhibition of endothelial cell movement and tubulogenesis by human recombinant soluble melanotransferrin: involvement of the u-PAR/LRP plasminolytic system. Biochim Biophys Acta. 2005;1743:243–53.
Article
CAS
PubMed
Google Scholar
Quemener C, Gabison EE, Naimi B, Lescaille G, Bougatef F, Podgorniak MP, et al. Extracellular matrix metalloproteinase inducer up-regulates the urokinase-type plasminogen activator system promoting tumor cell invasion. Cancer Res. 2007;67:9–15.
Article
CAS
PubMed
Google Scholar
Senchenko VN, Anedchenko EA, Kondratieva TT, Krasnov GS, Dmitriev AA, Zabarovska VI, et al. Simultaneous down-regulation of tumor suppressor genes RBSP3/CTDSPL, NPRL2/G21 and RASSF1A in primary non-small cell lung cancer. BMC Cancer. 2010;10:75.
Article
PubMed
PubMed Central
Google Scholar
Doeuvre L, Plawinski L, Goux D, Vivien D, Angles-Cano E. Plasmin on adherent cells: from microvesiculation to apoptosis. Biochem J. 2010;432:365–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lacroix R, Plawinski L, Robert S, Doeuvre L, Sabatier F, Martinez De Lizarrondo S, et al. Leukocyte- and endothelial-derived microparticles: a circulating source for fibrinolysis. Haematologica. 2012;97:1864–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tietze L, Elbrecht A, Schauerte C, Klosterhalfen B, Amo-Takyi B, Gehlen J, et al. Modulation of pro- and antifibrinolytic properties of human peritoneal mesothelial cells by transforming growth factor beta1 (TGF-beta1), tumor necrosis factor alpha (TNF-alpha) and interleukin 1beta (IL-1beta). Thromb Haemost. 1998;79:362–70.
CAS
PubMed
Google Scholar
Speiser W, Anders E, Binder BR, Muller-Berghaus G. Clot lysis mediated by cultured human microvascular endothelial cells. Thromb Haemost. 1988;60:463–7.
CAS
PubMed
Google Scholar
Van Hinsbergh VW, Sprengers ED, Kooistra T. Effect of thrombin on the production of plasminogen activators and PA inhibitor-1 by human foreskin microvascular endothelial cells. Thromb Haemost. 1987;57:148–53.
PubMed
Google Scholar
Wun TC, Capuano A. Initiation and regulation of fibrinolysis in human plasma at the plasminogen activator level. Blood. 1987;69:1354–62.
CAS
PubMed
Google Scholar
Weisel JW, Litvinov RI. The biochemical and physical process of fibrinolysis and effects of clot structure and stability on the lysis rate. Cardiovasc Hematol Agents Med Chem. 2008;6:161–80.
Article
CAS
PubMed
Google Scholar
Jerome WG, Handt S, Hantgan RR. Endothelial cells organize fibrin clots into structures that are more resistant to lysis. Microsc Microanal. 2005;11:268–77.
Article
CAS
PubMed
Google Scholar
Cheresh DA, Berliner SA, Vicente V, Ruggeri ZM. Recognition of distinct adhesive sites on fibrinogen by related integrins on platelets and endothelial cells. Cell. 1989;58:945–53.
Article
CAS
PubMed
Google Scholar
Blomback B, Carlsson K, Hessel B, Liljeborg A, Procyk R, Aslund N. Native fibrin gel networks observed by 3D microscopy, permeation and turbidity. Biochim Biophys Acta. 1989;997:96–110.
Article
CAS
PubMed
Google Scholar
Marchi R, Rojas H, Castillo O, Kanzler D. Structure of fibrin network of two abnormal fibrinogens with mutations in the alphaC domain on the human dermal microvascular endothelial cells 1. Blood Coagul Fibrinolysis. 2011;22:706–11.
Article
PubMed
Google Scholar
Campbell RA, Overmyer KA, Selzman CH, Sheridan BC, Wolberg AS. Contributions of extravascular and intravascular cells to fibrin network formation, structure, and stability. Blood. 2009;114:4886–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weisel JW, Nagaswami C. Computer modeling of fibrin polymerization kinetics correlated with electron microscope and turbidity observations: clot structure and assembly are kinetically controlled. Biophys J. 1992;63:111–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suehiro K, Mizuguchi J, Nishiyama K, Iwanaga S, Farrell DH, Ohtaki S. Fibrinogen binds to integrin alpha(5)beta(1) via the carboxyl-terminal RGD site of the Aalpha-chain. J Biochem. 2000;128:705–10.
Article
CAS
PubMed
Google Scholar