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Abstract
Background: It has been reported that some persons with hemochromatosis have low total blood lymphocyte
counts, but the reason for this is unknown.

Methods: We measured total blood lymphocyte counts using an automated blood cell counter in 146
hemochromatosis probands (88 men, 58 women) with HFE C282Y homozygosity who were diagnosed in medical
care. Univariate and multivariate analyses of total blood lymphocyte counts were evaluated using these variables:
sex; age, transferrin saturation, and serum ferritin concentration at diagnosis; units of blood removed by
phlebotomy to achieve iron depletion; and human leukocyte antigen (HLA)-A and -B alleles and haplotypes.

Results: The mean age at diagnosis was 49 ± 14 years (range 18 – 80 years) in men and 50 ± 13 years (range 22
– 88 years) in women. The correlations of total blood lymphocyte counts with sex, age, transferrin saturation,
and serum ferritin concentration at diagnosis, and units of blood removed by phlebotomy to achieve iron
depletion were not significant at the 0.05 level. Univariate analyses revealed significant associations between total
blood lymphocyte counts and presence of the HLA-A*01, -B*08, and -B*14 alleles, and the A*01-B*08 haplotype.
Presence of the A*01 allele, B*08 allele, or A*01-B*08 haplotype were associated with a lower total blood
lymphocyte count, whereas presence of the B*14 allele was associated with a greater total blood lymphocyte
count. There was an inverse association of total blood lymphocyte count with units of phlebotomy to achieve iron
depletion, serum ferritin concentration, and with presence of the A*01-B*08 haplotype.

Conclusion: We conclude that there is a significant inverse relationship of total blood lymphocyte counts and
severity of iron overload in hemochromatosis probands with HFE C282Y homozygosity. The presence of the
HLA-A*01 allele or the -B*08 allele was also associated with significantly lower total blood lymphocyte counts,
whereas presence of the -B*14 allele was associated with significantly higher total blood lymphocyte counts. In
univariate and multivariate analyses, total blood lymphocyte counts were significantly lower in probands with the
HLA-A*01-B*08 haplotype than in probands without this haplotype.
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Background
Hemochromatosis occurs in 0.003 – 0.005 of persons of
northwestern European descent, and is typically associ-
ated with homozygosity for the C282Y mutation of the
HFE gene (exon 2, nt 845 G→A), located ~4 Mb telomeric
to the human leukocyte antigen (HLA) region on Ch6p
[1,2]. Some persons with hemochromatosis absorb
increased quantities of iron and develop severe iron over-
load that is associated with hepatic cirrhosis, primary liver
cancer, diabetes mellitus, other endocrinopathy, arthrop-
athy, and cardiomyopathy, and with reduced longevity
[1]. Total blood lymphocyte counts were lower in hemo-
chromatosis index subjects with HFE C282Y homozygos-
ity, higher iron stores, and hepatic cirrhosis than in those
with lower iron burdens who did not have cirrhosis. In
men, there was a significant negative correlation of total
blood lymphocyte counts and body iron stores [3].

In the present study, we performed multivariate analyses
of the variables sex; age; transferrin saturation and serum
ferritin concentration at diagnosis; units of blood
removed by phlebotomy to achieve iron depletion; and
human leukocyte antigen (HLA)-A and -B alleles and hap-
lotypes to determine their effects on total blood lym-
phocyte count at diagnosis in hemochromatosis probands
with C282Y homozygosity. We discuss the implications of
our observations in explaining quantities of total blood
lymphocytes previously reported in persons with hemo-
chromatosis associated with C282Y homozygosity.

Methods
General criteria for selection of study subjects
The performance of this work was approved by the Insti-
tutional Review Boards of Brookwood Medical Center and
the University of Alabama at Birmingham. All subjects
were adults (≥ 18 years of age) who identified themselves
as Caucasians or whites; each resided in central Alabama.
All hemochromatosis probands were diagnosed in a sin-
gle community medical center; none was diagnosed by
family or population screening. Probands with diagnoses
of primary hematologic malignancies or those receiving
anti-cancer chemotherapy were excluded. Persons of Afri-
can ancestry were excluded for reasons described previ-
ously [4-7].

Selection of hemochromatosis probands
A presumptive diagnosis was established using an ele-
vated transferrin saturation criterion; each proband was
evaluated for iron overload and its complications [1,8,9].
We included probands who had: a) diagnosis in medical
care during the interval 1997–2002; b) HFE C282Y
homozygosity; c) available HLA-A and -B haplotypes; and
d) therapeutic phlebotomy to induce iron depletion [9].
This cohort is the same as otherwise described and evalu-
ated in a previous study [10].

Diagnosis of common variable immunodeficiency (CVID) 
and IgG subclass deficiency (IgGSD)
Diagnoses of CVID or IgGSD were based on demonstra-
tion of persistent, otherwise unexplained serum concen-
trations of Ig >2 SD below the corresponding mean levels
[6,7,11]. Criteria for the diagnosis of CVID were: 1)
decreased total serum IgG concentration; and 2) either
decreased IgG subclass(es), decreased serum IgA concen-
tration, or decreased serum IgM concentration [6,7,11].
Criteria for the diagnosis of IgGSD were: 1) normal total
serum IgG concentration; and 2) abnormally low serum
concentrations of one or more IgG subclasses; some
patients with IgGSD also have decreased levels of IgA or
IgM levels, although measurements of IgA or IgM are not
diagnostic criteria for CVID or IgGSD [6,7,11].

Iron-associated measurements
Serum iron concentration, total serum iron-binding
capacity, and serum ferritin concentration were measured
using automated clinical methods and blood specimens
obtained after an overnight fast. Transferrin saturation
was expressed as the quotient of serum iron and iron-
binding capacity × 100%. In some cases, percutaneous
biopsy specimens of liver were obtained as an adjunct to
hemochromatosis diagnosis and evaluation of hepatic
pathology. Phlebotomy to induce iron depletion was per-
formed as previously described; one unit of phlebotomy
was defined as ~500 mL of blood [9]. We used presump-
tive criteria of iron overload as indications to perform
therapeutic phlebotomy: serum ferritin ≥ 300 ng/mL
(men) and ≥ 200 ng/mL (women) [9]. Iron overload was
defined by demonstration of hepatic iron index ≥ 1.9 or
removal of ≥ 2.0 g Fe by therapeutic phlebotomy [12].
Iron depletion was defined as complete when the serum
ferritin level was 10 – 20 ng/mL, or when the hemoglobin
concentration was <11.0 g/dL or the hematocrit was
<33.0% for more than three weeks (in patients without
chronic anemia) [9].

Immunoglobulin measurements
Serum concentrations of IgG, IgG subclasses, IgA, and IgM
and were measured using standard automated methods
before IgG replacement therapy was initiated, and as nadir
values at the time of monthly IgG infusions in some
patients. Reference ranges for serum Ig concentrations are:
total IgG 700 – 1600 mg/dL; IgG1 422 – 1292 mg/dL; IgG2
117 – 747 mg/dL; IgG3 41 – 129 mg/dL; IgG4 1 – 291 mg/
dL; total IgA 70 – 400 mg/dL; and IgM 40 – 230 mg/dL.
The basis of these reference ranges has been reported else-
where [13]. Deficiency of an Ig class or subclass was
defined by a serum concentration at diagnosis that was
less than the corresponding lower reference limit. Quanti-
fication of serum concentrations of total serum IgG and
IgG subclasses was performed in all hemochromatosis
probands. Quantification of IgA and IgM was performed
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in subjects with CVID and IgGSD, although these analytes
were not measured in hemochromatosis probands whose
total serum IgG and IgG subclass values were within the
corresponding reference ranges. Measurement of IgA sub-
classes, IgD, or IgE in serum was not routinely performed
in any of the present subjects.

Total blood lymphocyte counts
Blood specimens obtained by antecubital venipuncture
from probands at the time of diagnosis of hemochroma-
tosis were analyzed using a Cell-Dyne 1300 automated
blood counter (Abbott Laboratories, Chicago, IL). Total
blood lymphocyte counts were defined as the numbers of
leukocytes of volume 40 – 100 fL detected by the counter
in the respective specimens; counts are expressed as cells/
mm3 × 10-3.

HFE and HLA analyses
HFE analyses were performed as described previously
[14]. HLA-A and -B alleles were detected using low-resolu-
tion DNA-based typing (PCR/sequence-specific oligonu-
cleotide probe) in hemochromatosis probands [14].
Control subjects were tested using the microdroplet lym-
phocytotoxicity test [15]; subjects were evaluated using
antisera that detected allele assignments described in the
9th International Histocompatibility Workshop [16].
Because the levels of resolution of the DNA-based and
serological typing methods we used are similar, alleles
detected by these respective methods provide concordant
allele assignments, with the exception of B*70 and B*71
that were not detected by serological methods. HLA typ-
ing of family members permitted assignment of Ch6p
haplotypes defined by -A and -B alleles [5,7].

Statistical considerations
The data set included observations in 146 hemochroma-
tosis probands. Numbers of men and women in various
proband subgroups vary because some data were unavail-
able due to conditions of referral and prior management;
we were unable to set phase for HLA haplotype determi-
nation in 20 probands. Analyses were performed with SAS
[17], a computer spreadsheet (Excel 2000®, Microsoft
Corp., Redmond, WA), and a statistical program (GB-Stat®

v. 10.0, 2003, Dynamic Microsystems, Inc., Silver Spring,
MD).

We determined that a loge (ln) transformation normalized
the iron measures data and total blood lymphocyte
counts (expressed as cells/mm3 × 10-3 ± 1 SD) [18], and
thus permitted the use of statistical techniques that
assume that values within a data set are normally distrib-
uted. Independent variables included a) sex; b) age at
diagnosis; c) transferrin saturation at diagnosis; d) serum
ferritin concentration at diagnosis; e) units of blood
removed by phlebotomy to achieve iron depletion; and f)

HLA-A and -B alleles and haplotypes. Descriptive data are
displayed as enumerations, percentages, mean ± 1 S.D. or
mean (95% confidence intervals (CI)). Frequency values
were compared using chi-square analysis or Fisher exact
test (one-tail), as appropriate. Mean values were com-
pared using a student t-test (two-tail). Transformed meas-
ures are rounded to two decimal places. Blood
lymphocyte counts were expressed to the nearest one dec-
imal place. Frequencies and p values are expressed to four
significant figures. We used an algorithm applicable to
loci with multiple alleles [19] to estimate the significance
level of Hardy-Weinberg proportions of HLA-A and -B
allele frequencies in hemochromatosis probands. Two
sets of analysis of variance (ANOVA) models were fit to
the loge-transformed total blood lymphocyte count data.
The first set used indicators of single HLA-A and -B alleles,
and the second used HLA-A and -B haplotypes. The over-
all fits of the ANOVA models are indicated by R2 values;
values of p < 0.05 were defined as significant.

Results
General characteristics of hemochromatosis probands 
with HFE C282Y homozygosity
There were 146 probands (88 men, 58 women). The mean
age at diagnosis was 49 ± 14 years (range 18 – 80 years) in
men and 50 ± 13 years (range 22 – 88 years) in women.
Iron measures are displayed in Table 1. Eighty-six men
and 42 women had iron overload. Fifteen men and six
women had hepatic cirrhosis proven by liver biopsy
(14.4%). Nine men and two women reported that they
consumed ≥ 60 g of ethanol daily (7.5%). Three men had
chronic hepatitis C; one man had porphyria cutanea
tarda. None had undergone splenectomy, and none had
lymphoproliferative disorders. Thirteen probands had
either CVID (n = 3) or IgGSD (n = 10) (7 men, 6 women).

Mean transferrin saturation, mean serum ferritin concen-
tration, and mean units of phlebotomy to achieve iron
depletion were greater in men than women with hemo-
chromatosis (Table 1). The mean units of phlebotomy to
achieve iron depletion was approximately twice as great in
men as women (Table 1).

Hardy-Weinberg proportions of HLA-A and HLA-B alleles
Frequencies of HLA-A and -B alleles in hemochromatosis
probands did not depart significantly from Hardy-Wein-
berg equilibrium.

Overall frequencies of HLA-A*03 allele and HLA-A and -B 
haplotypes
The frequencies of HLA-A*03 in male and female hemo-
chromatosis probands were similar (0.8023 vs. 0.6727; p
= 0.0823). Frequencies of HLA-A*03 in male and female
control subjects were also similar (0.2662 vs. 0.2815; p =
0.7162) [10]. The overall frequency of A*03 in
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hemochromatosis probands was greater than that in con-
trol subjects (0.7518 vs. 0.2787; p < 0.0001).

Frequencies of the most common haplotypes detected in
HFE C282Y homozygotes with a hemochromatosis phe-
notype from this geographic area [5,6,10] were compared
with corresponding frequencies in control subjects. The
overall frequency of A*01-B*08 was lower in hemochro-
matosis probands than in control subjects, but the differ-
ence was not significant (0.0603 vs. 0.0927, respectively;
p = 0.0634). The overall frequency of A*02-B*44 was sim-
ilar in hemochromatosis probands and in control subjects
(0.0461 vs. 0.0620, respectively; p = 0.2846). The overall
frequency of A*03-B*07 was greater in hemochromatosis
probands than in control subjects (0.2447 vs. 0.0520,
respectively; p < 0.0001, respectively). The overall fre-
quency of A*03-B*14 was greater in hemochromatosis
probands than in control subjects (0.0709 vs. 0.0113,
respectively; p < 0.0001).

Comparison of loge total blood lymphocyte counts in men 
and women
Univariate analyses of mean total blood lymphocyte
counts in men and women were expressed as cells/mm3 ×
10-3 (95% CI). In men, the mean was 1.9/mm3 × 10-3 (1.1,

3.5). In women, the mean was 2.0/mm3 × 10-3 (1.1, 3.5).
These values were not significantly different (p = 0.2473).

Correlation of loge total blood lymphocyte counts with 
clinical variables
The correlations of loge total blood lymphocyte counts
with sex; age, loge transferrin saturation, loge serum ferri-
tin concentration at diagnosis; and loge units of blood
removed by phlebotomy to achieve iron depletion were
not significant at the 0.05 level.

Univariate analyses of loge total blood lymphocyte counts 
and HLA-A and -B alleles
Univariate analyses revealed significant associations
between mean loge total blood lymphocyte count and
presence of the HLA-A*01, -B*08, and -B*14 alleles, and
the A*01-B*08 haplotype (Table 2). Presence of the -A*01
allele, -B*08 allele, or A*01-B*08 haplotype was associ-
ated with lower total blood lymphocyte counts, whereas
presence of the -B*14 allele was associated with greater
total blood lymphocyte counts.

Table 1: Iron measures in hemochromatosis probands with HFE C282Y homozygosity1

Iron measure Men (95% CI) [n] Women (95% CI) [n] p value

Serum iron, µg/dL 209 (137, 317) [81] 193 (118, 315) [51] 0.0523
Transferrin saturation, % 85 (59, 121) [83] 77 (44, 133) [52] 0.0120
Serum ferritin, ng/mL 1097 (209, 5768) [81] 546 (84, 3535) [56] <0.0001
Phlebotomy to achieve iron depletion, units 29 (7, 122) [73] 17 (4, 76) [42] 0.0001

1Serum iron, transferrin saturation, and serum ferritin levels were measured at diagnosis of hemochromatosis. Values were transformed (loge) to 
achieve normal distributions; comparisons were made using a student t-test (two-tail). Data displayed in the table are expressed as mean (95% CI) 
after computing antilogse of the transformed data; p values < 0.05 were defined as significant.

Table 2: Mean total blood lymphocyte counts in hemochromatosis probands with HFE C282Y homozygosity

HLA loge lymphocyte count 
(cells/mm3 × 10-3 (SD))

lymphocyte count 
(cells/mm3 × 10-3 (95% CI))1

p value (present vs. absent)2

A*01 present 1.012 (0.213) 2.8 (1.8, 4.2) 0.0362
A*01 absent 1.101 (0.184) 3.0 (2.1, 4.3)
B*08 present 0.975 (0.178) 2.7 (1.9, 3.8) 0.0048
B*08 absent 1.104 (0.189) 3.0 (2.1, 4.4)
B*14 present 1.160 (0.180) 3.2 (2.2, 4.5) 0.0317
B*14 absent 1.065 (0.192) 2.9 (2.0, 4.2)
A*01-B*08 present 0.943 (0.195) 2.6 (1.8, 3.8) 0.0026
A*01-B*08 absent 1.101 (0.185) 3.0 (2.1, 4.3)

1Lymphocyte counts were measured at diagnosis of hemochromatosis, and are expressed as mean (95% CI) after computing antilogse of the 
transformed data.
2Comparisons were made using loge lymphocyte counts and student t-test (two-tail); p values < 0.05 were defined as significant.
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Multivariate analyses of loge total blood lymphocyte 
counts and clinical variables, HLA-A and -B alleles, and 
HLA-A and -B haplotypes
The residual variance formed by accounting for age and
gender effects were used to explore multivariable associa-
tions. The HLA alleles that predicted loge total blood lym-
phocyte counts were B*08 (p = 0.0283) and B*14 (p =
0.0204). The presence of B*08 was associated with lower
loge total blood lymphocyte counts, whereas the presence
of B*14 was associated with higher loge total blood lym-
phocyte counts. When the residuals of the other clinical
variables were added to the model, the effects of units of
phlebotomy to induce iron depletion, serum ferritin con-
centration, and B*08 were significant (p = 0.0326,
0.0172, and 0.0127, respectively). Mean lymphocyte
counts were lower with increasing serum ferritin
concentration.

Similar models were fit using the HLA-A and -B haplo-
types as variables. The A*01-B*08 haplotype was the only
significant predictor of total blood lymphocyte count (p =
0.0021), and the presence of A*01-B*08 was associated
with lower total blood lymphocyte counts after account-
ing for age and gender. When other variables were added
to this same model, the units of phlebotomy to induce
iron depletion (p = 0.0440), serum ferritin concentration
(p = 0.0108) and the effect of A*01-B*08 (p = 0.0023)
remained significant. A decrease in loge total blood lym-
phocyte count was associated with an increase in units of
phlebotomy to induce iron depletion, loge serum ferritin
concentration, and with presence of the A*01-B*08
haplotype.

Univariate analyses of loge total blood lymphocyte counts 
and hepatic cirrhosis
The mean total blood lymphocyte count in the 21
probands with hepatic cirrhosis proven by biopsy (1.9
cells/mm3 × 10-3 (95% CI: 1.1 × 10-3, 3.3 × 10-3)) was sim-
ilar to that in the 125 probands without cirrhosis (1.9
cells/mm3 × 10-3 (95% CI: 1.1 × 10-3, 3.5 × 10-3); p =
0.8514).

Univariate analyses of loge total blood lymphocyte counts 
and CVID or IgGSD
The mean total blood lymphocyte count in the 13
probands with CVID or IgGSD (2.0 cells/mm3 × 10-3 (95%
CI: 1.5 × 10-3, 2.6 × 10-3)) was similar to that in the 133
probands who did not have CVID or IgGSD (1.9 cells/
mm3 × 10-3 (95% CI: 1.0 × 10-3, 3.5 × 10-3); p = 0.5814).

Discussion
The present study is comprised of the largest number of
HFE C282Y homozygotes with hemochromatosis pheno-
types who had available HLA-A and -B allele and haplo-
type data and were evaluated for the effects of clinical

variables on total blood lymphocyte counts. Overall, the
mean total blood lymphocyte counts in the present 88
male and 58 female hemochromatosis probands are very
similar to those determined by automated methods in
100 male and 100 female healthy volunteer Caucasians
[20]. Taken together, these results confirm observations of
Cruz et al. that total blood lymphocyte counts of C282Y
homozygotes with hemochromatosis phenotypes (37
men, 9 women) did not differ significantly from those of
unrelated normal control subjects (116 men, 148
women) [21] and those of Porto et al. that there is an asso-
ciation between low CD8(+) numbers, HLA phenotype,
and severity of iron overload [22].

In a multivariate analysis, we observed that total blood
lymphocyte counts were lower in probands who required
greater numbers of units of phlebotomy to achieve iron
depletion or who had greater serum ferritin concentra-
tions at diagnosis. This is consistent with a previous report
of a significant inverse correlation of total blood lym-
phocyte counts with iron stores quantified by phlebot-
omy in a smaller hemochromatosis case series [3].
Although measurement of blood lymphocyte subsets was
beyond the scope of the present study, it has been
reported that proportions of the two major peripheral T-
lymphocyte subsets expressed as CD4/CD8 ratio are sta-
ble before and after phlebotomy therapy for hemochro-
matosis, confirming the existence of a homeostatic
mechanism that regulates the relative numbers of the two
major blood T-lymphocyte populations [22,23]. Before
the discovery of HFE, it was reported that inheritance of
part or all of the hemochromatosis ancestral haplotype
that includes HLA-A*03 and -B*07, particularly in a
homozygous configuration, was associated with evidence
of more severe iron overload in hemochromatosis
patients in Australia, Alabama, and Italy [24-26]. Further,
Porto et al. demonstrated that the severity of iron overload
quantified by phlebotomy in patients with hemochroma-
tosis was correlated with the proportions of CD4(+) and
CD8(+) blood lymphocytes and the presence or absence
of HLA-A*03 [22]. Thus, the latter report integrated then-
existing knowledge of the relationships of severity of iron
overload, HLA types, and blood lymphocyte subsets in
persons with hemochromatosis.

Some observations support the hypothesis that lym-
phocyte numbers could influence iron absorption and
therefore severity of iron overload in hemochromatosis.
High CD4/CD8 ratios appear to precede the development
of severe iron overload in persons with hemochromatosis
[23,27]. Persons with hemochromatosis have signifi-
cantly different CD(8)+ blood lymphocyte subsets than
normal control subjects, based on analysis of CD(28)
positivity or negativity [28]. In mice, blood lymphocyte
numbers may influence iron overload severity in the
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absence of functional HFE protein [29]. There is a candi-
date mechanism that could account for a lymphocyte-
mediated influence on iron absorption and severity of
iron overload in hemochromatosis. Interleukin-6 (IL-6), a
cytokine produced predominantly by lymphocytes and
macrophages [30,31], induces expression of hepcidin, a
potent inhibitor of iron absorption [32]. Further, hepci-
din levels are significantly decreased in persons who have
hemochromatosis associated with mutations of HFE
(Ch6p21.3) [32]. Although most reports of lymphocyte
numbers and subsets have been made in persons pre-
sumed or documented to have HLA- or HFE-associated
hemochromatosis or iron overload, lymphopenia also
occurred in an unusual case of early age-of-onset hemo-
chromatosis and severe iron overload associated with
homozygosity for a hepcidin promoter mutation on
Ch19q13 [33].

Some reports indicate that lymphocyte numbers do not
influence iron absorption either in patients with hemo-
chromatosis or in those with iron overload due to other
causes. In the present study, we observed that the mean
blood lymphocyte counts were similar in men and
women. In an earlier study of the same cohort, we
observed that the severity of iron overload was signifi-
cantly greater in men than women [10]. However, there
was significant disparity in the frequency of certain HLA-
A and -B types and haplotypes between men and women,
but there was no significant association of these HLA
markers with the severity of iron overload in a multivari-
ate analysis that included sex as a independent variable
[10]. Hepcidin levels are significantly decreased in hemo-
chromatosis associated with TFR2, FPN1, and HJV muta-
tions [34-36]. However, it is unknown whether there is an
inverse association of blood lymphocyte numbers and the
severity of iron overload or whether lymphocytes contrib-
ute to decreased hepcidin levels in these disorders. In
patients with beta-thalassemia major, there was a highly
significant linear increase in the percentages of blood
OKT8(+) cells with an increasing number of units of
erythrocytes transfused, irrespective of splenectomy [37].
The percentage of blood OKT4(+) cells varied inversely
with increasing numbers of units of erythrocyte transfu-
sion in patients who had not undergone splenectomy; in
those who had undergone splenectomy, no significant
correlation was observed [37]. Inverse relationships of
CD8(+) blood lymphocytes and severity of transfusion
iron overload were also observed in persons with beta-
thalassemia, and deferoxamine therapy was associated
with an increase in CD8(+) blood lymphocytes [38]. In
sub-Saharan Africans with African iron overload, a disor-
der that is typically not linked to HLA or HFE C282Y,
there was no significant association of serum ferritin con-
centrations and total blood lymphocyte counts [3,39]. In
an experimental model of secondary iron overload in rats,

the distribution of lymphocyte subsets in blood, thymus,
spleen, mesenteric lymph nodes, Peyer patches, and bone
marrow were similar in control and experimental groups
[40]. Altogether, these results suggest that there is not a
consistent relationship of severity of iron overload with
CD4/CD8 ratios, blood T-lymphocyte subsets, or abnor-
mal total blood lymphocyte counts in patients with
hemochromatosis or in those with iron overload due to
other causes [3,41].

A putative gene on Ch6p that modifies iron overload
severity in hemochromatosis is presumed to be linked
predominantly to A*03 or A*03-B*07 [14,22,24-26,42].
At present, there are two candidate genes. One is localized
to the region of D6S105 [42]. The multivariate analysis of
a large cohort of hemochromatosis probands with HFE
C282Y homozygosity demonstrated that A*03-B*07 has
no significant effect on units of phlebotomy to achieve
iron depletion, but did not exclude a putative modifier
gene in this region [10]. In another study, extended hap-
lotypes of the Ch6p21.3 region in hemochromatosis
patients and their "phenotypically unaffected" relatives
with HFE C282Y homozygosity were similar [43].
Another candidate is tumor necrosis factor (TNF)-α pro-
moter polymorphisms [44]. In an independent case
series, however, a positive relationship of TNF-α promoter
polymorphisms with iron overload severity or its compli-
cations was not confirmed [45]. Altogether, these later
observations do not strongly support previous hypotheses
that putative genes or alleles on Ch6p modify the severity
of iron overload in C282Y homozygotes with
hemochromatosis.

Our data set permitted an analysis of the relationship of
total blood lymphocyte counts and HLA-A and -B alleles
and haplotypes. In the present hemochromatosis
probands, univariate analyses revealed that the presence
of the HLA-A*01 allele or the -B*08 allele was associated
with lower total blood lymphocyte counts, whereas pres-
ence of the -B*14 allele was associated with greater total
blood lymphocyte counts. Bryan et al. first suggested a
possible role for HLA in the interaction of iron, HLA, and
lymphocytes by demonstrating that there was a differen-
tial response of peripheral blood mononuclear cells from
HLA-A*02 and non-HLA-A*02 donors when the respec-
tive lymphocyte isolates were exposed to iron in a mixed
lymphocyte culture reaction [46]. In hemochromatosis
families and random population control subjects from
Portugal, significantly higher blood CD8(+) lymphocyte
counts were observed in subjects who had both the HFE
H63D mutation and the HLA-A*29 allele [47]. In a con-
trol population from Portugal, there was a significant cor-
relation of the HLA-A*01 with high numbers of CD8(+)
blood lymphocytes, and an association of HLA-A*24 with
low numbers of CD8(+) blood lymphocytes [21]. These
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observations indicate that total blood lymphocyte counts
or blood T-lymphocyte subsets in persons who inherit
common HFE missense mutations (with or without
hemochromatosis) are associated with HLA-A and -B
alleles.

In the present hemochromatosis probands, A*01-B*08
was a significant predictor of lower total blood lym-
phocyte counts in univariate and multivariate analyses.
Further, A*01-B*08 is associated with greater serum ferri-
tin concentrations in older hemochromatosis probands
with C282Y homozygosity grouped by age than other
haplotypes [10]. However, the association of A*01-B*08
and the severity of iron overload quantified by phlebot-
omy to achieve iron depletion was not significant [10]. In
persons without hemochromatosis, total blood lym-
phocyte counts are lower in those with HLA-A*01-B*08,
DR3 than in persons with other HLA haplotypes [48,49].
Persons with human immunodeficiency virus (HIV)
infections and HLA-A*01-B*08 have lower total blood
lymphocyte counts than persons with HIV infections who
do not have HLA-A*01-B*08 [50,51]. Taken together,
these observations suggest that there is a determinant of
total blood lymphocyte counts or CD8(+) blood lym-
phocyte counts within the HLA-A*01-B*08 haplotype or
in linkage disequilibrium with it. These observations also
support previous reports that genetic factors in the region
of the major histocompatibility complex on chromosome
6 have a major influence on the variation in blood lym-
phocyte numbers, especially those of T-lymphocyte sub-
sets, in humans [21,52,53]. In a study of 15 CEPH
families, quantitative trait loci that accounted for signifi-
cant proportions of the phenotypic variance of blood lym-
phocyte counts and blood lymphocyte subpopulations
were also detected on chromosomes 1, 2, 3, 4, 8, 9, 11, 12,
and 18 [54].

In the present study, there was no significant difference in
the total blood lymphocyte counts of hemochromatosis
probands with or without hepatic cirrhosis in a univariate
analysis. In contrast, it has been reported that total blood
lymphocyte counts were lower in hemochromatosis index
subjects with C282Y homozygosity with hepatic cirrhosis
than in those with lower iron burdens who did not have
cirrhosis [3]. However, the latter investigators indicated
that their overall findings argue against the possibility that
low blood lymphocyte counts in HFE hemochromatosis
are a consequence of iron overload or represent an epi-
phenomenon of advanced cirrhosis [3,41]. The differ-
ences in the results of the present study and those of a
previous report [3] may also be due to ethnic differences
in the respective study populations, and the greater
number of patients and lower prevalence of hepatic cir-
rhosis in the present report (n = 146; 14% had cirrhosis vs.
previous report: n = 20; 65% had cirrhosis).

Total blood lymphocyte counts, including T-and B-lym-
phocyte subset counts, are subnormal in some persons
with CVID [55,56]. However, we did not detect a signifi-
cant difference in the total blood lymphocyte counts in
hemochromatosis probands with or without CVID or
IgGSD. This is consistent with the generally less severe
blood lymphocyte subset deficits in IgGSD than in CVID
[55,57], and with the greater proportion of the hemochro-
matosis probands in the present and another cohort who
had IgGSD than CVID [6].

Conclusion
We conclude that there is a significant inverse relationship
of total blood lymphocyte counts and severity of iron
overload in hemochromatosis probands with HFE C282Y
homozygosity. The presence of the HLA-A*01 allele or the
-B*08 allele was also associated with significantly lower
total blood lymphocyte counts, whereas presence of the -
B*14 allele was associated with significantly higher total
blood lymphocyte counts. In univariate and multivariate
analyses, total blood lymphocyte counts were signifi-
cantly lower in probands with the HLA-A*01-B*08 haplo-
type than in probands without this haplotype.
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